| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import os
- import os.path as osp
- import random
- import cv2
- import time
- import numpy as np
- import xml.etree.ElementTree as ET
- import paddlex.utils.logging as logging
- def write_xml(im_info, label_info, anno_dir):
- im_fname = im_info['file_name']
- im_h, im_w, im_c = im_info['image_shape']
- is_crowd = label_info['is_crowd']
- gt_class = label_info['gt_class']
- gt_bbox = label_info['gt_bbox']
- gt_score = label_info['gt_score']
- gt_poly = label_info['gt_poly']
- difficult = label_info['difficult']
- import xml.dom.minidom as minidom
- xml_doc = minidom.Document()
- root = xml_doc.createElement("annotation")
- xml_doc.appendChild(root)
- node_filename = xml_doc.createElement("filename")
- node_filename.appendChild(xml_doc.createTextNode(im_fname))
- root.appendChild(node_filename)
- node_size = xml_doc.createElement("size")
- node_width = xml_doc.createElement("width")
- node_width.appendChild(xml_doc.createTextNode(str(im_w)))
- node_size.appendChild(node_width)
- node_height = xml_doc.createElement("height")
- node_height.appendChild(xml_doc.createTextNode(str(im_h)))
- node_size.appendChild(node_height)
- node_depth = xml_doc.createElement("depth")
- node_depth.appendChild(xml_doc.createTextNode(str(im_c)))
- node_size.appendChild(node_depth)
- root.appendChild(node_size)
- for i in range(len(label_info['gt_class'])):
- node_obj = xml_doc.createElement("object")
- node_name = xml_doc.createElement("name")
- label = gt_class[i]
- node_name.appendChild(xml_doc.createTextNode(label))
- node_obj.appendChild(node_name)
- node_diff = xml_doc.createElement("difficult")
- node_diff.appendChild(xml_doc.createTextNode(str(difficult[i][0])))
- node_obj.appendChild(node_diff)
- node_box = xml_doc.createElement("bndbox")
- node_xmin = xml_doc.createElement("xmin")
- node_xmin.appendChild(xml_doc.createTextNode(str(gt_bbox[i][0])))
- node_box.appendChild(node_xmin)
- node_ymin = xml_doc.createElement("ymin")
- node_ymin.appendChild(xml_doc.createTextNode(str(gt_bbox[i][1])))
- node_box.appendChild(node_ymin)
- node_xmax = xml_doc.createElement("xmax")
- node_xmax.appendChild(xml_doc.createTextNode(str(gt_bbox[i][2])))
- node_box.appendChild(node_xmax)
- node_ymax = xml_doc.createElement("ymax")
- node_ymax.appendChild(xml_doc.createTextNode(str(gt_bbox[i][3])))
- node_box.appendChild(node_ymax)
- node_obj.appendChild(node_box)
- root.appendChild(node_obj)
- img_name_part = im_fname.split('.')[0]
- with open(osp.join(anno_dir, img_name_part + ".xml"), 'w') as fxml:
- xml_doc.writexml(
- fxml, indent='\t', addindent='\t', newl='\n', encoding="utf-8")
- def paste_objects(templates, background, save_dir='dataset_clone'):
- """将目标物体粘贴在背景图片上生成新的图片,并加入到数据集中
- Args:
- templates (list|tuple):可以将多张图像上的目标物体同时粘贴在同一个背景图片上,
- 因此templates是一个列表,其中每个元素是一个dict,表示一张图片的目标物体。
- 一张图片的目标物体有`image`和`annos`两个关键字,`image`的键值是图像的路径,
- 或者是解码后的排列格式为(H, W, C)且类型为uint8且为BGR格式的数组。
- 图像上可以有多个目标物体,因此`annos`的键值是一个列表,列表中每个元素是一个dict,
- 表示一个目标物体的信息。该dict包含`polygon`和`category`两个关键字,
- 其中`polygon`表示目标物体的边缘坐标,例如[[0, 0], [0, 1], [1, 1], [1, 0]],
- `category`表示目标物体的类别,例如'dog'。
- background (dict): 背景图片可以有真值,因此background是一个dict,包含`image`和`annos`
- 两个关键字,`image`的键值是背景图像的路径,或者是解码后的排列格式为(H, W, C)
- 且类型为uint8且为BGR格式的数组。若背景图片上没有真值,则`annos`的键值是空列表[],
- 若有,则`annos`的键值是由多个dict组成的列表,每个dict表示一个物体的信息,
- 包含`bbox`和`category`两个关键字,`bbox`的键值是物体框左上角和右下角的坐标,即
- [x1, y1, x2, y2],`category`表示目标物体的类别,例如'dog'。
- save_dir (str):新图片及其标注文件的存储目录。默认值为`dataset_clone`。
- """
- if not osp.exists(save_dir):
- os.makedirs(save_dir)
- image_dir = osp.join(save_dir, 'JPEGImages_clone')
- anno_dir = osp.join(save_dir, 'Annotations_clone')
- json_path = osp.join(save_dir, "annotations.json")
- if not osp.exists(image_dir):
- os.makedirs(image_dir)
- if not osp.exists(anno_dir):
- os.makedirs(anno_dir)
- num_objs = len(background['annos'])
- for temp in templates:
- num_objs += len(temp['annos'])
- gt_bbox = np.zeros((num_objs, 4), dtype=np.float32)
- gt_class = list()
- gt_score = np.ones((num_objs, 1), dtype=np.float32)
- is_crowd = np.zeros((num_objs, 1), dtype=np.int32)
- difficult = np.zeros((num_objs, 1), dtype=np.int32)
- i = -1
- for i, back_anno in enumerate(background['annos']):
- gt_bbox[i] = back_anno['bbox']
- gt_class.append(back_anno['category'])
- back_im = background['image']
- if isinstance(back_im, np.ndarray):
- if len(back_im.shape) != 3:
- raise Exception(
- "background image should be 3-dimensions, but now is {}-dimensions".
- format(len(back_im.shape)))
- else:
- try:
- back_im = cv2.imread(back_im, cv2.IMREAD_UNCHANGED)
- except:
- raise TypeError('Can\'t read The image file {}!'.format(back_im))
- back_annos = background['annos']
- im_h, im_w, im_c = back_im.shape
- for temp in templates:
- temp_im = temp['image']
- if isinstance(temp_im, np.ndarray):
- if len(temp_im.shape) != 3:
- raise Exception(
- "template image should be 3-dimensions, but now is {}-dimensions".
- format(len(temp_im.shape)))
- else:
- try:
- temp_im = cv2.imread(temp_im, cv2.IMREAD_UNCHANGED)
- except:
- raise TypeError('Can\'t read The image file {}!'.format(
- temp_im))
- if im_c != temp_im.shape[-1]:
- raise Exception(
- "The channels of template({}) and background({}) images are not same. Objects cannot be pasted normally! Please check your images.".
- format(temp_im.shape[-1], im_c))
- temp_annos = temp['annos']
- for temp_anno in temp_annos:
- temp_mask = np.zeros(temp_im.shape, temp_im.dtype)
- temp_poly = np.array(temp_anno['polygon'], np.int32)
- temp_category = temp_anno['category']
- cv2.fillPoly(temp_mask, [temp_poly], (255, 255, 255))
- x_list = [temp_poly[i][0] for i in range(len(temp_poly))]
- y_list = [temp_poly[i][1] for i in range(len(temp_poly))]
- temp_poly_w = max(x_list) - min(x_list)
- temp_poly_h = max(y_list) - min(y_list)
- found = False
- while not found:
- center_x = random.randint(1, im_w - 1)
- center_y = random.randint(1, im_h - 1)
- if center_x < temp_poly_w / 2 or center_x > im_w - temp_poly_w / 2 - 1 or \
- center_y < temp_poly_h / 2 or center_y > im_h - temp_poly_h / 2 - 1:
- found = False
- continue
- if len(back_annos) == 0:
- found = True
- for back_anno in back_annos:
- x1, y1, x2, y2 = back_anno['bbox']
- if center_x > x1 and center_x < x2 and center_y > y1 and center_y < y2:
- found = False
- continue
- found = True
- center = (center_x, center_y)
- back_im = cv2.seamlessClone(temp_im, back_im, temp_mask, center,
- cv2.MIXED_CLONE)
- i += 1
- x1 = center[0] - temp_poly_w / 2
- x2 = center[0] + temp_poly_w / 2
- y1 = center[1] - temp_poly_h / 2
- y2 = center[1] + temp_poly_h / 2
- gt_bbox[i] = [x1, y1, x2, y2]
- gt_class.append(temp_category)
- im_fname = str(int(time.time() * 1000)) + '.jpg'
- im_info = {
- 'file_name': im_fname,
- 'image_shape': [im_h, im_w, im_c],
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'difficult': difficult,
- 'gt_poly': [],
- }
- cv2.imwrite(osp.join(image_dir, im_fname), back_im.astype('uint8'))
- write_xml(im_info, label_info, anno_dir)
- logging.info("Gegerated image is saved in {}".format(image_dir))
- logging.info("Generated Annotation is saved as xml files in {}".format(
- anno_dir))
|