yolov5cls.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import logging
  16. from .... import UltraInferModel, ModelFormat
  17. from .... import c_lib_wrap as C
  18. class YOLOv5ClsPreprocessor:
  19. def __init__(self):
  20. """Create a preprocessor for YOLOv5Cls"""
  21. self._preprocessor = C.vision.classification.YOLOv5ClsPreprocessor()
  22. def run(self, input_ims):
  23. """Preprocess input images for YOLOv5Cls
  24. :param: input_ims: (list of numpy.ndarray)The input image
  25. :return: list of FDTensor
  26. """
  27. return self._preprocessor.run(input_ims)
  28. @property
  29. def size(self):
  30. """
  31. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [224, 224]
  32. """
  33. return self._preprocessor.size
  34. @size.setter
  35. def size(self, wh):
  36. assert isinstance(
  37. wh, (list, tuple)
  38. ), "The value to set `size` must be type of tuple or list."
  39. assert (
  40. len(wh) == 2
  41. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  42. len(wh)
  43. )
  44. self._preprocessor.size = wh
  45. class YOLOv5ClsPostprocessor:
  46. def __init__(self):
  47. """Create a postprocessor for YOLOv5Cls"""
  48. self._postprocessor = C.vision.classification.YOLOv5ClsPostprocessor()
  49. def run(self, runtime_results, ims_info):
  50. """Postprocess the runtime results for YOLOv5Cls
  51. :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
  52. :param: ims_info: (list of dict)Record input_shape and output_shape
  53. :return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
  54. """
  55. return self._postprocessor.run(runtime_results, ims_info)
  56. @property
  57. def topk(self):
  58. """
  59. topk for postprocessing, default is 1
  60. """
  61. return self._postprocessor.topk
  62. @topk.setter
  63. def topk(self, topk):
  64. assert isinstance(topk, int), "The value to set `top k` must be type of int."
  65. self._postprocessor.topk = topk
  66. class YOLOv5Cls(UltraInferModel):
  67. def __init__(
  68. self,
  69. model_file,
  70. params_file="",
  71. runtime_option=None,
  72. model_format=ModelFormat.ONNX,
  73. ):
  74. """Load a YOLOv5Cls model exported by YOLOv5Cls.
  75. :param model_file: (str)Path of model file, e.g ./YOLOv5Cls.onnx
  76. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  77. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  78. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  79. """
  80. super(YOLOv5Cls, self).__init__(runtime_option)
  81. assert (
  82. model_format == ModelFormat.ONNX
  83. ), "YOLOv5Cls only support model format of ModelFormat.ONNX now."
  84. self._model = C.vision.classification.YOLOv5Cls(
  85. model_file, params_file, self._runtime_option, model_format
  86. )
  87. assert self.initialized, "YOLOv5Cls initialize failed."
  88. def predict(self, input_image):
  89. """Classify an input image
  90. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  91. :return: ClassifyResult
  92. """
  93. assert input_image is not None, "Input image is None."
  94. return self._model.predict(input_image)
  95. def batch_predict(self, images):
  96. """Classify a batch of input image
  97. :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
  98. :return list of ClassifyResult
  99. """
  100. return self._model.batch_predict(images)
  101. @property
  102. def preprocessor(self):
  103. """Get YOLOv5ClsPreprocessor object of the loaded model
  104. :return YOLOv5ClsPreprocessor
  105. """
  106. return self._model.preprocessor
  107. @property
  108. def postprocessor(self):
  109. """Get YOLOv5ClsPostprocessor object of the loaded model
  110. :return YOLOv5ClsPostprocessor
  111. """
  112. return self._model.postprocessor