nanodet_plus.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import logging
  16. from .... import UltraInferModel, ModelFormat
  17. from .... import c_lib_wrap as C
  18. class NanoDetPlus(UltraInferModel):
  19. def __init__(
  20. self,
  21. model_file,
  22. params_file="",
  23. runtime_option=None,
  24. model_format=ModelFormat.ONNX,
  25. ):
  26. """Load a NanoDetPlus model exported by NanoDet.
  27. :param model_file: (str)Path of model file, e.g ./nanodet.onnx
  28. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  29. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  30. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  31. """
  32. # 调用基函数进行backend_option的初始化
  33. # 初始化后的option保存在self._runtime_option
  34. super(NanoDetPlus, self).__init__(runtime_option)
  35. self._model = C.vision.detection.NanoDetPlus(
  36. model_file, params_file, self._runtime_option, model_format
  37. )
  38. # 通过self.initialized判断整个模型的初始化是否成功
  39. assert self.initialized, "NanoDetPlus initialize failed."
  40. def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
  41. """Detect an input image
  42. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  43. :param conf_threshold: confidence threashold for postprocessing, default is 0.25
  44. :param nms_iou_threshold: iou threashold for NMS, default is 0.5
  45. :return: DetectionResult
  46. """
  47. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  48. # 一些跟NanoDetPlus模型有关的属性封装
  49. # 多数是预处理相关,可通过修改如model.size = [416, 416]改变预处理时resize的大小(前提是模型支持)
  50. @property
  51. def size(self):
  52. """
  53. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (320, 320)
  54. """
  55. return self._model.size
  56. @property
  57. def padding_value(self):
  58. # padding value, size should be the same as channels
  59. return self._model.padding_value
  60. @property
  61. def keep_ratio(self):
  62. # keep aspect ratio or not when perform resize operation. This option is set as false by default in NanoDet-Plus
  63. return self._model.keep_ratio
  64. @property
  65. def downsample_strides(self):
  66. # downsample strides for NanoDet-Plus to generate anchors, will take (8, 16, 32, 64) as default values
  67. return self._model.downsample_strides
  68. @property
  69. def max_wh(self):
  70. # for offseting the boxes by classes when using NMS, default 4096
  71. return self._model.max_wh
  72. @property
  73. def reg_max(self):
  74. """
  75. reg_max for GFL regression, default 7
  76. """
  77. return self._model.reg_max
  78. @size.setter
  79. def size(self, wh):
  80. assert isinstance(
  81. wh, (list, tuple)
  82. ), "The value to set `size` must be type of tuple or list."
  83. assert (
  84. len(wh) == 2
  85. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  86. len(wh)
  87. )
  88. self._model.size = wh
  89. @padding_value.setter
  90. def padding_value(self, value):
  91. assert isinstance(
  92. value, list
  93. ), "The value to set `padding_value` must be type of list."
  94. self._model.padding_value = value
  95. @keep_ratio.setter
  96. def keep_ratio(self, value):
  97. assert isinstance(
  98. value, bool
  99. ), "The value to set `keep_ratio` must be type of bool."
  100. self._model.keep_ratio = value
  101. @downsample_strides.setter
  102. def downsample_strides(self, value):
  103. assert isinstance(
  104. value, list
  105. ), "The value to set `downsample_strides` must be type of list."
  106. self._model.downsample_strides = value
  107. @max_wh.setter
  108. def max_wh(self, value):
  109. assert isinstance(
  110. value, float
  111. ), "The value to set `max_wh` must be type of float."
  112. self._model.max_wh = value
  113. @reg_max.setter
  114. def reg_max(self, value):
  115. assert isinstance(value, int), "The value to set `reg_max` must be type of int."
  116. self._model.reg_max = value