yolov6.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import logging
  16. from .... import UltraInferModel, ModelFormat
  17. from .... import c_lib_wrap as C
  18. class YOLOv6(UltraInferModel):
  19. def __init__(
  20. self,
  21. model_file,
  22. params_file="",
  23. runtime_option=None,
  24. model_format=ModelFormat.ONNX,
  25. ):
  26. """Load a YOLOv6 model exported by YOLOv6.
  27. :param model_file: (str)Path of model file, e.g ./yolov6.onnx
  28. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  29. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  30. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  31. """
  32. # 调用基函数进行backend_option的初始化
  33. # 初始化后的option保存在self._runtime_option
  34. super(YOLOv6, self).__init__(runtime_option)
  35. self._model = C.vision.detection.YOLOv6(
  36. model_file, params_file, self._runtime_option, model_format
  37. )
  38. # 通过self.initialized判断整个模型的初始化是否成功
  39. assert self.initialized, "YOLOv6 initialize failed."
  40. def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
  41. """Detect an input image
  42. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  43. :param conf_threshold: confidence threashold for postprocessing, default is 0.25
  44. :param nms_iou_threshold: iou threashold for NMS, default is 0.5
  45. :return: DetectionResult
  46. """
  47. return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
  48. # 一些跟YOLOv6模型有关的属性封装
  49. # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
  50. @property
  51. def size(self):
  52. """
  53. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
  54. """
  55. return self._model.size
  56. @property
  57. def padding_value(self):
  58. # padding value, size should be the same as channels
  59. return self._model.padding_value
  60. @property
  61. def is_no_pad(self):
  62. # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
  63. return self._model.is_no_pad
  64. @property
  65. def is_mini_pad(self):
  66. # only pad to the minimum rectange which height and width is times of stride
  67. return self._model.is_mini_pad
  68. @property
  69. def is_scale_up(self):
  70. # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
  71. return self._model.is_scale_up
  72. @property
  73. def stride(self):
  74. # padding stride, for is_mini_pad
  75. return self._model.stride
  76. @property
  77. def max_wh(self):
  78. # for offseting the boxes by classes when using NMS
  79. return self._model.max_wh
  80. @size.setter
  81. def size(self, wh):
  82. assert isinstance(
  83. wh, (list, tuple)
  84. ), "The value to set `size` must be type of tuple or list."
  85. assert (
  86. len(wh) == 2
  87. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  88. len(wh)
  89. )
  90. self._model.size = wh
  91. @padding_value.setter
  92. def padding_value(self, value):
  93. assert isinstance(
  94. value, list
  95. ), "The value to set `padding_value` must be type of list."
  96. self._model.padding_value = value
  97. @is_no_pad.setter
  98. def is_no_pad(self, value):
  99. assert isinstance(
  100. value, bool
  101. ), "The value to set `is_no_pad` must be type of bool."
  102. self._model.is_no_pad = value
  103. @is_mini_pad.setter
  104. def is_mini_pad(self, value):
  105. assert isinstance(
  106. value, bool
  107. ), "The value to set `is_mini_pad` must be type of bool."
  108. self._model.is_mini_pad = value
  109. @is_scale_up.setter
  110. def is_scale_up(self, value):
  111. assert isinstance(
  112. value, bool
  113. ), "The value to set `is_scale_up` must be type of bool."
  114. self._model.is_scale_up = value
  115. @stride.setter
  116. def stride(self, value):
  117. assert isinstance(value, int), "The value to set `stride` must be type of int."
  118. self._model.stride = value
  119. @max_wh.setter
  120. def max_wh(self, value):
  121. assert isinstance(
  122. value, float
  123. ), "The value to set `max_wh` must be type of float."
  124. self._model.max_wh = value