PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考paddlex.deploy
可参考模型导出将模型导出为inference格式的模型。
点击下载测试图片 xiaoduxiong_test_image.tar.gz
单张图片预测
import paddlex as pdx
predictor = pdx.deploy.Predictor('./inference_model')
result = predictor.predict(image='xiaoduxiong_test_image/JPEGImages/WeChatIMG110.jpeg')
批量图片预测
import paddlex as pdx
predictor = pdx.deploy.Predictor('./inference_model')
image_list = ['xiaoduxiong_test_image/JPEGImages/WeChatIMG110.jpeg',
'xiaoduxiong_test_image/JPEGImages/WeChatIMG111.jpeg']
result = predictor.predict(image_list=image_list)
关于预测速度的说明:采用Paddle的Predictor进行预测时,由于涉及到内存显存初始化等原因,在模型加载后刚开始预测速度会较慢,一般在模型运行20~50后(即预测20~30张图片)预测速度才会稳定。
| 模型 | AnalysisPredictor耗时 | Executor耗时 | 输入图像大小 |
|---|---|---|---|
| resnet50 | 4.84 | 7.57 | 224*224 |
| mobilenet_v2 | 3.27 | 5.76 | 224*224 |
| unet | 22.51 | 34.60 | 513*513 |
| deeplab_mobile | 63.44 | 358.31 | 1025*2049 |
| yolo_mobilenetv2 | 15.20 | 19.54 | 608*608 |
| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 | 800*1088 |
| faster_rcnn_r50_1x | 326.11 | 347.22 | 800*1067 |
| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800*1088 |
| mask_rcnn_r50_1x | 326.11 | 350.94 | 800*1067 |