segmenter.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import os.path as osp
  16. import numpy as np
  17. from collections import OrderedDict
  18. import paddle
  19. import paddle.nn.functional as F
  20. from paddle.static import InputSpec
  21. import paddleseg
  22. import paddlex
  23. from paddlex.cv.transforms import arrange_transforms
  24. from paddlex.utils import get_single_card_bs, DisablePrint
  25. import paddlex.utils.logging as logging
  26. from .base import BaseModel
  27. from .utils import seg_metrics as metrics
  28. from paddlex.utils.checkpoint import seg_pretrain_weights_dict
  29. from paddlex.cv.transforms import Decode, Resize
  30. __all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2"]
  31. class BaseSegmenter(BaseModel):
  32. def __init__(self,
  33. model_name,
  34. num_classes=2,
  35. use_mixed_loss=False,
  36. **params):
  37. self.init_params = locals()
  38. super(BaseSegmenter, self).__init__('segmenter')
  39. if not hasattr(paddleseg.models, model_name):
  40. raise Exception("ERROR: There's no model named {}.".format(
  41. model_name))
  42. self.model_name = model_name
  43. self.num_classes = num_classes
  44. self.use_mixed_loss = use_mixed_loss
  45. self.losses = None
  46. self.labels = None
  47. self.net = self.build_net(**params)
  48. self.find_unused_parameters = True
  49. def build_net(self, **params):
  50. # TODO: when using paddle.utils.unique_name.guard,
  51. # DeepLabv3p and HRNet will raise a error
  52. net = paddleseg.models.__dict__[self.model_name](
  53. num_classes=self.num_classes, **params)
  54. return net
  55. def _fix_transforms_shape(self, image_shape):
  56. if hasattr(self, 'test_transforms'):
  57. if self.test_transforms is not None:
  58. has_resize_op = False
  59. resize_op_idx = -1
  60. normalize_op_idx = len(self.test_transforms.transforms)
  61. for idx, op in enumerate(self.test_transforms.transforms):
  62. name = op.__class__.__name__
  63. if name == 'Normalize':
  64. normalize_op_idx = idx
  65. if 'Resize' in name:
  66. has_resize_op = True
  67. resize_op_idx = idx
  68. if not has_resize_op:
  69. self.test_transforms.transforms.insert(
  70. normalize_op_idx, Resize(target_size=image_shape))
  71. else:
  72. self.test_transforms.transforms[resize_op_idx] = Resize(
  73. target_size=image_shape)
  74. def _get_test_inputs(self, image_shape):
  75. if image_shape is not None:
  76. if len(image_shape) == 2:
  77. image_shape = [None, 3] + image_shape
  78. self._fix_transforms_shape(image_shape[-2:])
  79. else:
  80. image_shape = [None, 3, -1, -1]
  81. input_spec = [
  82. InputSpec(
  83. shape=image_shape, name='image', dtype='float32')
  84. ]
  85. return input_spec
  86. def run(self, net, inputs, mode):
  87. net_out = net(inputs[0])
  88. logit = net_out[0]
  89. outputs = OrderedDict()
  90. if mode == 'test':
  91. origin_shape = inputs[1]
  92. score_map = self._postprocess(
  93. logit, origin_shape, transforms=inputs[2])
  94. label_map = paddle.argmax(
  95. score_map, axis=1, keepdim=True, dtype='int32')
  96. score_map = paddle.max(score_map, axis=1, keepdim=True)
  97. score_map = paddle.squeeze(score_map)
  98. label_map = paddle.squeeze(label_map)
  99. outputs = {'label_map': label_map, 'score_map': score_map}
  100. if mode == 'eval':
  101. pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
  102. label = inputs[1]
  103. origin_shape = [label.shape[-2:]]
  104. # TODO: 替换cv2后postprocess移出run
  105. pred = self._postprocess(pred, origin_shape, transforms=inputs[2])
  106. intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
  107. pred, label, self.num_classes)
  108. outputs['intersect_area'] = intersect_area
  109. outputs['pred_area'] = pred_area
  110. outputs['label_area'] = label_area
  111. outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
  112. self.num_classes)
  113. if mode == 'train':
  114. loss_list = metrics.loss_computation(
  115. logits_list=net_out, labels=inputs[1], losses=self.losses)
  116. loss = sum(loss_list)
  117. outputs['loss'] = loss
  118. return outputs
  119. def default_loss(self):
  120. if isinstance(self.use_mixed_loss, bool):
  121. if self.use_mixed_loss:
  122. losses = [
  123. paddleseg.models.CrossEntropyLoss(),
  124. paddleseg.models.LovaszSoftmaxLoss()
  125. ]
  126. coef = [.8, .2]
  127. loss_type = [
  128. paddleseg.models.MixedLoss(
  129. losses=losses, coef=coef),
  130. ]
  131. else:
  132. loss_type = [paddleseg.models.CrossEntropyLoss()]
  133. else:
  134. losses, coef = list(zip(*self.use_mixed_loss))
  135. if not set(losses).issubset(
  136. ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
  137. raise ValueError(
  138. "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
  139. )
  140. losses = [getattr(paddleseg.models, loss)() for loss in losses]
  141. loss_type = [
  142. paddleseg.models.MixedLoss(
  143. losses=losses, coef=list(coef))
  144. ]
  145. if self.model_name == 'FastSCNN':
  146. loss_type *= 2
  147. loss_coef = [1.0, 0.4]
  148. elif self.model_name == 'BiSeNetV2':
  149. loss_type *= 5
  150. loss_coef = [1.0] * 5
  151. else:
  152. loss_coef = [1.0]
  153. losses = {'types': loss_type, 'coef': loss_coef}
  154. return losses
  155. def default_optimizer(self,
  156. parameters,
  157. learning_rate,
  158. num_epochs,
  159. num_steps_each_epoch,
  160. lr_decay_power=0.9):
  161. decay_step = num_epochs * num_steps_each_epoch
  162. lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
  163. learning_rate, decay_step, end_lr=0, power=lr_decay_power)
  164. optimizer = paddle.optimizer.Momentum(
  165. learning_rate=lr_scheduler,
  166. parameters=parameters,
  167. momentum=0.9,
  168. weight_decay=4e-5)
  169. return optimizer
  170. def train(self,
  171. num_epochs,
  172. train_dataset,
  173. train_batch_size=2,
  174. eval_dataset=None,
  175. optimizer=None,
  176. save_interval_epochs=1,
  177. log_interval_steps=2,
  178. save_dir='output',
  179. pretrain_weights='CITYSCAPES',
  180. learning_rate=0.01,
  181. lr_decay_power=0.9,
  182. early_stop=False,
  183. early_stop_patience=5,
  184. use_vdl=True,
  185. resume_checkpoint=None):
  186. """
  187. Train the model.
  188. Args:
  189. num_epochs(int): The number of epochs.
  190. train_dataset(paddlex.dataset): Training dataset.
  191. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  192. eval_dataset(paddlex.dataset, optional):
  193. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  194. optimizer(paddle.optimizer.Optimizer or None, optional):
  195. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  196. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  197. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  198. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  199. pretrain_weights(str or None, optional):
  200. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
  201. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  202. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  203. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  204. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  205. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  206. resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
  207. If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
  208. `pretrain_weights` can be set simultaneously. Defaults to None.
  209. """
  210. if pretrain_weights is not None and resume_checkpoint is not None:
  211. logging.error(
  212. "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
  213. exit=True)
  214. self.labels = train_dataset.labels
  215. if self.losses is None:
  216. self.losses = self.default_loss()
  217. if optimizer is None:
  218. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  219. self.optimizer = self.default_optimizer(
  220. self.net.parameters(), learning_rate, num_epochs,
  221. num_steps_each_epoch, lr_decay_power)
  222. else:
  223. self.optimizer = optimizer
  224. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  225. if pretrain_weights not in seg_pretrain_weights_dict[
  226. self.model_name]:
  227. logging.warning(
  228. "Path of pretrain_weights('{}') does not exist!".format(
  229. pretrain_weights))
  230. logging.warning("Pretrain_weights is forcibly set to '{}'. "
  231. "If don't want to use pretrain weights, "
  232. "set pretrain_weights to be None.".format(
  233. seg_pretrain_weights_dict[self.model_name][
  234. 0]))
  235. pretrain_weights = seg_pretrain_weights_dict[self.model_name][
  236. 0]
  237. elif pretrain_weights is not None and osp.exists(pretrain_weights):
  238. if osp.splitext(pretrain_weights)[-1] != '.pdparams':
  239. logging.error(
  240. "Invalid pretrain weights. Please specify a '.pdparams' file.",
  241. exit=True)
  242. pretrained_dir = osp.join(save_dir, 'pretrain')
  243. self.net_initialize(
  244. pretrain_weights=pretrain_weights,
  245. save_dir=pretrained_dir,
  246. resume_checkpoint=resume_checkpoint)
  247. self.train_loop(
  248. num_epochs=num_epochs,
  249. train_dataset=train_dataset,
  250. train_batch_size=train_batch_size,
  251. eval_dataset=eval_dataset,
  252. save_interval_epochs=save_interval_epochs,
  253. log_interval_steps=log_interval_steps,
  254. save_dir=save_dir,
  255. early_stop=early_stop,
  256. early_stop_patience=early_stop_patience,
  257. use_vdl=use_vdl)
  258. def quant_aware_train(self,
  259. num_epochs,
  260. train_dataset,
  261. train_batch_size=2,
  262. eval_dataset=None,
  263. optimizer=None,
  264. save_interval_epochs=1,
  265. log_interval_steps=2,
  266. save_dir='output',
  267. learning_rate=0.0001,
  268. lr_decay_power=0.9,
  269. early_stop=False,
  270. early_stop_patience=5,
  271. use_vdl=True,
  272. resume_checkpoint=None,
  273. quant_config=None):
  274. """
  275. Quantization-aware training.
  276. Args:
  277. num_epochs(int): The number of epochs.
  278. train_dataset(paddlex.dataset): Training dataset.
  279. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  280. eval_dataset(paddlex.dataset, optional):
  281. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  282. optimizer(paddle.optimizer.Optimizer or None, optional):
  283. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  284. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  285. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  286. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  287. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  288. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  289. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  290. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  291. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  292. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  293. configuration will be used. Defaults to None.
  294. resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
  295. from. If None, no training checkpoint will be resumed. Defaults to None.
  296. """
  297. self._prepare_qat(quant_config)
  298. self.train(
  299. num_epochs=num_epochs,
  300. train_dataset=train_dataset,
  301. train_batch_size=train_batch_size,
  302. eval_dataset=eval_dataset,
  303. optimizer=optimizer,
  304. save_interval_epochs=save_interval_epochs,
  305. log_interval_steps=log_interval_steps,
  306. save_dir=save_dir,
  307. pretrain_weights=None,
  308. learning_rate=learning_rate,
  309. lr_decay_power=lr_decay_power,
  310. early_stop=early_stop,
  311. early_stop_patience=early_stop_patience,
  312. use_vdl=use_vdl,
  313. resume_checkpoint=resume_checkpoint)
  314. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  315. """
  316. Evaluate the model.
  317. Args:
  318. eval_dataset(paddlex.dataset): Evaluation dataset.
  319. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  320. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  321. Returns:
  322. collections.OrderedDict with key-value pairs:
  323. {"miou": `mean intersection over union`,
  324. "category_iou": `category-wise mean intersection over union`,
  325. "oacc": `overall accuracy`,
  326. "category_acc": `category-wise accuracy`,
  327. "kappa": ` kappa coefficient`,
  328. "category_F1-score": `F1 score`}.
  329. """
  330. arrange_transforms(
  331. model_type=self.model_type,
  332. transforms=eval_dataset.transforms,
  333. mode='eval')
  334. self.net.eval()
  335. nranks = paddle.distributed.get_world_size()
  336. local_rank = paddle.distributed.get_rank()
  337. if nranks > 1:
  338. # Initialize parallel environment if not done.
  339. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  340. ):
  341. paddle.distributed.init_parallel_env()
  342. batch_size_each_card = get_single_card_bs(batch_size)
  343. if batch_size_each_card > 1:
  344. batch_size_each_card = 1
  345. batch_size = batch_size_each_card * paddlex.env_info['num']
  346. logging.warning(
  347. "Segmenter only supports batch_size=1 for each gpu/cpu card " \
  348. "during evaluation, so batch_size " \
  349. "is forcibly set to {}.".format(batch_size))
  350. self.eval_data_loader = self.build_data_loader(
  351. eval_dataset, batch_size=batch_size, mode='eval')
  352. intersect_area_all = 0
  353. pred_area_all = 0
  354. label_area_all = 0
  355. conf_mat_all = []
  356. logging.info(
  357. "Start to evaluate(total_samples={}, total_steps={})...".format(
  358. eval_dataset.num_samples,
  359. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  360. with paddle.no_grad():
  361. for step, data in enumerate(self.eval_data_loader):
  362. data.append(eval_dataset.transforms.transforms)
  363. outputs = self.run(self.net, data, 'eval')
  364. pred_area = outputs['pred_area']
  365. label_area = outputs['label_area']
  366. intersect_area = outputs['intersect_area']
  367. conf_mat = outputs['conf_mat']
  368. # Gather from all ranks
  369. if nranks > 1:
  370. intersect_area_list = []
  371. pred_area_list = []
  372. label_area_list = []
  373. conf_mat_list = []
  374. paddle.distributed.all_gather(intersect_area_list,
  375. intersect_area)
  376. paddle.distributed.all_gather(pred_area_list, pred_area)
  377. paddle.distributed.all_gather(label_area_list, label_area)
  378. paddle.distributed.all_gather(conf_mat_list, conf_mat)
  379. # Some image has been evaluated and should be eliminated in last iter
  380. if (step + 1) * nranks > len(eval_dataset):
  381. valid = len(eval_dataset) - step * nranks
  382. intersect_area_list = intersect_area_list[:valid]
  383. pred_area_list = pred_area_list[:valid]
  384. label_area_list = label_area_list[:valid]
  385. conf_mat_list = conf_mat_list[:valid]
  386. intersect_area_all += sum(intersect_area_list)
  387. pred_area_all += sum(pred_area_list)
  388. label_area_all += sum(label_area_list)
  389. conf_mat_all.extend(conf_mat_list)
  390. else:
  391. intersect_area_all = intersect_area_all + intersect_area
  392. pred_area_all = pred_area_all + pred_area
  393. label_area_all = label_area_all + label_area
  394. conf_mat_all.append(conf_mat)
  395. class_iou, miou = paddleseg.utils.metrics.mean_iou(
  396. intersect_area_all, pred_area_all, label_area_all)
  397. # TODO 确认是按oacc还是macc
  398. class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
  399. pred_area_all)
  400. kappa = paddleseg.utils.metrics.kappa(intersect_area_all,
  401. pred_area_all, label_area_all)
  402. category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
  403. label_area_all)
  404. eval_metrics = OrderedDict(
  405. zip([
  406. 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
  407. 'category_F1-score'
  408. ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
  409. if return_details:
  410. conf_mat = sum(conf_mat_all)
  411. eval_details = {'confusion_matrix': conf_mat.tolist()}
  412. return eval_metrics, eval_details
  413. return eval_metrics
  414. def predict(self, img_file, transforms=None):
  415. """
  416. Do inference.
  417. Args:
  418. Args:
  419. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  420. Image path or decoded image data in a BGR format, which also could constitute a list,
  421. meaning all images to be predicted as a mini-batch.
  422. transforms(paddlex.transforms.Compose or None, optional):
  423. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  424. Returns:
  425. If img_file is a string or np.array, the result is a dict with key-value pairs:
  426. {"label map": `label map`, "score_map": `score map`}.
  427. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  428. label_map(np.ndarray): the predicted label map
  429. score_map(np.ndarray): the prediction score map
  430. """
  431. if transforms is None and not hasattr(self, 'test_transforms'):
  432. raise Exception("transforms need to be defined, now is None.")
  433. if transforms is None:
  434. transforms = self.test_transforms
  435. if isinstance(img_file, (str, np.ndarray)):
  436. images = [img_file]
  437. else:
  438. images = img_file
  439. batch_im, batch_origin_shape = self._preprocess(images, transforms,
  440. self.model_type)
  441. self.net.eval()
  442. data = (batch_im, batch_origin_shape, transforms.transforms)
  443. outputs = self.run(self.net, data, 'test')
  444. label_map = outputs['label_map']
  445. label_map = label_map.numpy().astype('uint8')
  446. score_map = outputs['score_map']
  447. score_map = score_map.numpy().astype('float32')
  448. prediction = [{
  449. 'label_map': l,
  450. 'score_map': s
  451. } for l, s in zip(label_map, score_map)]
  452. if isinstance(img_file, (str, np.ndarray)):
  453. prediction = prediction[0]
  454. return prediction
  455. def _preprocess(self, images, transforms, model_type):
  456. arrange_transforms(
  457. model_type=model_type, transforms=transforms, mode='test')
  458. batch_im = list()
  459. batch_ori_shape = list()
  460. for im in images:
  461. sample = {'image': im}
  462. if isinstance(sample['image'], str):
  463. sample = Decode(to_rgb=False)(sample)
  464. ori_shape = sample['image'].shape[:2]
  465. im = transforms(sample)[0]
  466. batch_im.append(im)
  467. batch_ori_shape.append(ori_shape)
  468. batch_im = paddle.to_tensor(batch_im)
  469. return batch_im, batch_ori_shape
  470. @staticmethod
  471. def get_transforms_shape_info(batch_ori_shape, transforms):
  472. batch_restore_list = list()
  473. for ori_shape in batch_ori_shape:
  474. restore_list = list()
  475. h, w = ori_shape[0], ori_shape[1]
  476. for op in transforms:
  477. if op.__class__.__name__ in ['Resize', 'ResizeByShort']:
  478. restore_list.append(('resize', (h, w)))
  479. h, w = op.target_size
  480. if op.__class__.__name__ in ['Padding']:
  481. restore_list.append(('padding', (h, w)))
  482. h, w = op.target_size
  483. batch_restore_list.append(restore_list)
  484. return batch_restore_list
  485. def _postprocess(self, batch_pred, batch_origin_shape, transforms):
  486. batch_restore_list = BaseSegmenter.get_transforms_shape_info(
  487. batch_origin_shape, transforms)
  488. results = list()
  489. for pred, restore_list in zip(batch_pred, batch_restore_list):
  490. pred = paddle.unsqueeze(pred, axis=0)
  491. for item in restore_list[::-1]:
  492. # TODO: 替换成cv2的interpolate(部署阶段无法使用paddle op)
  493. h, w = item[1][0], item[1][1]
  494. if item[0] == 'resize':
  495. pred = F.interpolate(pred, (h, w), mode='nearest')
  496. elif item[0] == 'padding':
  497. pred = pred[:, :, 0:h, 0:w]
  498. else:
  499. pass
  500. results.append(pred)
  501. batch_pred = paddle.concat(results, axis=0)
  502. return batch_pred
  503. class UNet(BaseSegmenter):
  504. def __init__(self,
  505. num_classes=2,
  506. use_mixed_loss=False,
  507. use_deconv=False,
  508. align_corners=False):
  509. params = {'use_deconv': use_deconv, 'align_corners': align_corners}
  510. super(UNet, self).__init__(
  511. model_name='UNet',
  512. num_classes=num_classes,
  513. use_mixed_loss=use_mixed_loss,
  514. **params)
  515. class DeepLabV3P(BaseSegmenter):
  516. def __init__(self,
  517. num_classes=2,
  518. backbone='ResNet50_vd',
  519. use_mixed_loss=False,
  520. output_stride=8,
  521. backbone_indices=(0, 3),
  522. aspp_ratios=(1, 12, 24, 36),
  523. aspp_out_channels=256,
  524. align_corners=False):
  525. self.backbone_name = backbone
  526. if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
  527. raise ValueError(
  528. "backbone: {} is not supported. Please choose one of "
  529. "('ResNet50_vd', 'ResNet101_vd')".format(backbone))
  530. with DisablePrint():
  531. backbone = getattr(paddleseg.models, backbone)(
  532. output_stride=output_stride)
  533. params = {
  534. 'backbone': backbone,
  535. 'backbone_indices': backbone_indices,
  536. 'aspp_ratios': aspp_ratios,
  537. 'aspp_out_channels': aspp_out_channels,
  538. 'align_corners': align_corners
  539. }
  540. super(DeepLabV3P, self).__init__(
  541. model_name='DeepLabV3P',
  542. num_classes=num_classes,
  543. use_mixed_loss=use_mixed_loss,
  544. **params)
  545. class FastSCNN(BaseSegmenter):
  546. def __init__(self,
  547. num_classes=2,
  548. use_mixed_loss=False,
  549. align_corners=False):
  550. params = {'align_corners': align_corners}
  551. super(FastSCNN, self).__init__(
  552. model_name='FastSCNN',
  553. num_classes=num_classes,
  554. use_mixed_loss=use_mixed_loss,
  555. **params)
  556. class HRNet(BaseSegmenter):
  557. def __init__(self,
  558. num_classes=2,
  559. width=48,
  560. use_mixed_loss=False,
  561. align_corners=False):
  562. if width not in (18, 48):
  563. raise ValueError(
  564. "width={} is not supported, please choose from [18, 48]".
  565. format(width))
  566. self.backbone_name = 'HRNet_W{}'.format(width)
  567. with DisablePrint():
  568. backbone = getattr(paddleseg.models, self.backbone_name)(
  569. align_corners=align_corners)
  570. params = {'backbone': backbone, 'align_corners': align_corners}
  571. super(HRNet, self).__init__(
  572. model_name='FCN',
  573. num_classes=num_classes,
  574. use_mixed_loss=use_mixed_loss,
  575. **params)
  576. self.model_name = 'HRNet'
  577. class BiSeNetV2(BaseSegmenter):
  578. def __init__(self,
  579. num_classes=2,
  580. use_mixed_loss=False,
  581. align_corners=False):
  582. params = {'align_corners': align_corners}
  583. super(BiSeNetV2, self).__init__(
  584. model_name='BiSeNetV2',
  585. num_classes=num_classes,
  586. use_mixed_loss=use_mixed_loss,
  587. **params)