| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import os
- import cv2
- import copy
- import os.path as osp
- import numpy as np
- from .core.explanation import Explanation
- from .core.normlime_base import precompute_normlime_weights
- def visualize(img_file,
- model,
- normlime_dataset=None,
- explanation_type='lime',
- num_samples=3000,
- batch_size=50,
- save_dir='./'):
- model.arrange_transforms(
- transforms=model.test_transforms, mode='test')
- tmp_transforms = copy.deepcopy(model.test_transforms)
- tmp_transforms.transforms = tmp_transforms.transforms[:-2]
- img = tmp_transforms(img_file)[0]
- img = np.around(img).astype('uint8')
- img = np.expand_dims(img, axis=0)
- explaier = None
- if explanation_type == 'lime':
- explaier = get_lime_explaier(img, model, num_samples=num_samples, batch_size=batch_size)
- elif explanation_type == 'normlime':
- if normlime_dataset is None:
- raise Exception('The normlime_dataset is None. Cannot implement this kind of explanation')
- explaier = get_normlime_explaier(img, model, normlime_dataset,
- num_samples=num_samples, batch_size=batch_size,
- save_dir=save_dir)
- else:
- raise Exception('The {} explanantion method is not supported yet!'.format(explanation_type))
- img_name = osp.splitext(osp.split(img_file)[-1])[0]
- explaier.explain(img, save_dir=save_dir)
-
-
- def get_lime_explaier(img, model, num_samples=3000, batch_size=50):
- def predict_func(image):
- image = image.astype('float32')
- for i in range(image.shape[0]):
- image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
- model.test_transforms.transforms = model.test_transforms.transforms[-2:]
- out = model.explanation_predict(image)
- return out[0]
- explaier = Explanation('lime',
- predict_func,
- num_samples=num_samples,
- batch_size=batch_size)
- return explaier
- def get_normlime_explaier(img, model, normlime_dataset, num_samples=3000, batch_size=50, save_dir='./'):
- def precompute_predict_func(image):
- image = image.astype('float32')
- model.test_transforms.transforms = model.test_transforms.transforms[-2:]
- out = model.explanation_predict(image)
- return out[0]
- def predict_func(image):
- image = image.astype('float32')
- for i in range(image.shape[0]):
- image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
- model.test_transforms.transforms = model.test_transforms.transforms[-2:]
- out = model.explanation_predict(image)
- return out[0]
- root_path = os.environ['HOME']
- root_path = osp.join(root_path, '.paddlex')
- pre_models_path = osp.join(root_path, "pre_models")
- if not osp.exists(pre_models_path):
- os.makedirs(pre_models_path)
- # TODO
- # paddlex.utils.download_and_decompress(url, path=pre_models_path)
- npy_dir = precompute_for_normlime(precompute_predict_func,
- normlime_dataset,
- num_samples=num_samples,
- batch_size=batch_size,
- save_dir=save_dir)
- explaier = Explanation('normlime',
- predict_func,
- num_samples=num_samples,
- batch_size=batch_size,
- normlime_weights=npy_dir)
- return explaier
- def precompute_for_normlime(predict_func, normlime_dataset, num_samples=3000, batch_size=50, save_dir='./'):
- image_list = []
- for item in normlime_dataset.file_list:
- image_list.append(item[0])
- return precompute_normlime_weights(
- image_list,
- predict_func,
- num_samples=num_samples,
- batch_size=batch_size,
- save_dir=save_dir)
-
|