hrnet.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. # coding: utf8
  2. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. from __future__ import absolute_import
  16. from __future__ import division
  17. from __future__ import print_function
  18. from collections import OrderedDict
  19. import paddle.fluid as fluid
  20. from paddle.fluid.initializer import MSRA
  21. from paddle.fluid.param_attr import ParamAttr
  22. from .model_utils.libs import sigmoid_to_softmax
  23. from .model_utils.loss import softmax_with_loss
  24. from .model_utils.loss import dice_loss
  25. from .model_utils.loss import bce_loss
  26. import paddlex
  27. import paddlex.utils.logging as logging
  28. class HRNet(object):
  29. def __init__(self,
  30. num_classes,
  31. mode='train',
  32. width=18,
  33. use_bce_loss=False,
  34. use_dice_loss=False,
  35. class_weight=None,
  36. ignore_index=255):
  37. # dice_loss或bce_loss只适用两类分割中
  38. if num_classes > 2 and (use_bce_loss or use_dice_loss):
  39. raise ValueError(
  40. "dice loss and bce loss is only applicable to binary classfication"
  41. )
  42. if class_weight is not None:
  43. if isinstance(class_weight, list):
  44. if len(class_weight) != num_classes:
  45. raise ValueError(
  46. "Length of class_weight should be equal to number of classes"
  47. )
  48. elif isinstance(class_weight, str):
  49. if class_weight.lower() != 'dynamic':
  50. raise ValueError(
  51. "if class_weight is string, must be dynamic!")
  52. else:
  53. raise TypeError(
  54. 'Expect class_weight is a list or string but receive {}'.
  55. format(type(class_weight)))
  56. self.num_classes = num_classes
  57. self.mode = mode
  58. self.use_bce_loss = use_bce_loss
  59. self.use_dice_loss = use_dice_loss
  60. self.class_weight = class_weight
  61. self.ignore_index = ignore_index
  62. self.backbone = paddlex.cv.nets.hrnet.HRNet(
  63. width=width, feature_maps="stage4")
  64. def build_net(self, inputs):
  65. if self.use_dice_loss or self.use_bce_loss:
  66. self.num_classes = 1
  67. image = inputs['image']
  68. st4 = self.backbone(image)
  69. # upsample
  70. shape = fluid.layers.shape(st4[0])[-2:]
  71. st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=shape)
  72. st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=shape)
  73. st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=shape)
  74. out = fluid.layers.concat(st4, axis=1)
  75. last_channels = sum(self.backbone.channels[self.backbone.width][-1])
  76. out = self._conv_bn_layer(
  77. input=out,
  78. filter_size=1,
  79. num_filters=last_channels,
  80. stride=1,
  81. if_act=True,
  82. name='conv-2')
  83. out = fluid.layers.conv2d(
  84. input=out,
  85. num_filters=self.num_classes,
  86. filter_size=1,
  87. stride=1,
  88. padding=0,
  89. act=None,
  90. param_attr=ParamAttr(
  91. initializer=MSRA(), name='conv-1_weights'),
  92. bias_attr=False)
  93. input_shape = fluid.layers.shape(image)[-2:]
  94. logit = fluid.layers.resize_bilinear(out, input_shape)
  95. if self.num_classes == 1:
  96. out = sigmoid_to_softmax(logit)
  97. out = fluid.layers.transpose(out, [0, 2, 3, 1])
  98. else:
  99. out = fluid.layers.transpose(logit, [0, 2, 3, 1])
  100. pred = fluid.layers.argmax(out, axis=3)
  101. pred = fluid.layers.unsqueeze(pred, axes=[3])
  102. if self.mode == 'train':
  103. label = inputs['label']
  104. mask = label != self.ignore_index
  105. return self._get_loss(logit, label, mask)
  106. elif self.mode == 'eval':
  107. label = inputs['label']
  108. mask = label != self.ignore_index
  109. loss = self._get_loss(logit, label, mask)
  110. return loss, pred, label, mask
  111. else:
  112. if self.num_classes == 1:
  113. logit = sigmoid_to_softmax(logit)
  114. else:
  115. logit = fluid.layers.softmax(logit, axis=1)
  116. return pred, logit
  117. def generate_inputs(self):
  118. inputs = OrderedDict()
  119. inputs['image'] = fluid.data(
  120. dtype='float32', shape=[None, 3, None, None], name='image')
  121. if self.mode == 'train':
  122. inputs['label'] = fluid.data(
  123. dtype='int32', shape=[None, 1, None, None], name='label')
  124. elif self.mode == 'eval':
  125. inputs['label'] = fluid.data(
  126. dtype='int32', shape=[None, 1, None, None], name='label')
  127. return inputs
  128. def _get_loss(self, logit, label, mask):
  129. avg_loss = 0
  130. if not (self.use_dice_loss or self.use_bce_loss):
  131. avg_loss += softmax_with_loss(
  132. logit,
  133. label,
  134. mask,
  135. num_classes=self.num_classes,
  136. weight=self.class_weight,
  137. ignore_index=self.ignore_index)
  138. else:
  139. if self.use_dice_loss:
  140. avg_loss += dice_loss(logit, label, mask)
  141. if self.use_bce_loss:
  142. avg_loss += bce_loss(
  143. logit, label, mask, ignore_index=self.ignore_index)
  144. return avg_loss
  145. def _conv_bn_layer(self,
  146. input,
  147. filter_size,
  148. num_filters,
  149. stride=1,
  150. padding=1,
  151. num_groups=1,
  152. if_act=True,
  153. name=None):
  154. conv = fluid.layers.conv2d(
  155. input=input,
  156. num_filters=num_filters,
  157. filter_size=filter_size,
  158. stride=stride,
  159. padding=(filter_size - 1) // 2,
  160. groups=num_groups,
  161. act=None,
  162. param_attr=ParamAttr(
  163. initializer=MSRA(), name=name + '_weights'),
  164. bias_attr=False)
  165. bn_name = name + '_bn'
  166. bn = fluid.layers.batch_norm(
  167. input=conv,
  168. param_attr=ParamAttr(
  169. name=bn_name + "_scale",
  170. initializer=fluid.initializer.Constant(1.0)),
  171. bias_attr=ParamAttr(
  172. name=bn_name + "_offset",
  173. initializer=fluid.initializer.Constant(0.0)),
  174. moving_mean_name=bn_name + '_mean',
  175. moving_variance_name=bn_name + '_variance')
  176. if if_act:
  177. bn = fluid.layers.relu(bn)
  178. return bn