| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional
- import numpy as np
- from scipy.ndimage import rotate
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- from ..components import CropByPolys, SortQuadBoxes, SortPolyBoxes
- from .result import OCRResult
- from ..doc_preprocessor.result import DocPreprocessorResult
- from ....utils import logging
- class OCRPipeline(BasePipeline):
- """OCR Pipeline"""
- entities = "OCR"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- self.inintial_predictor(config)
- self.text_type = config["text_type"]
- if self.text_type == "general":
- self._sort_boxes = SortQuadBoxes()
- self._crop_by_polys = CropByPolys(det_box_type="quad")
- elif self.text_type == "seal":
- self._sort_boxes = SortPolyBoxes()
- self._crop_by_polys = CropByPolys(det_box_type="poly")
- else:
- raise ValueError("Unsupported text type {}".format(self.text_type))
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def set_used_models_flag(self, config: Dict) -> None:
- """
- Set the flags for which models to use based on the configuration.
- Args:
- config (Dict): A dictionary containing configuration settings.
- Returns:
- None
- """
- pipeline_name = config["pipeline_name"]
- self.pipeline_name = pipeline_name
- self.use_doc_preprocessor = False
- if "use_doc_preprocessor" in config:
- self.use_doc_preprocessor = config["use_doc_preprocessor"]
- self.use_textline_orientation = False
- if "use_textline_orientation" in config:
- self.use_textline_orientation = config["use_textline_orientation"]
- def inintial_predictor(self, config: Dict) -> None:
- """Initializes the predictor based on the provided configuration.
- Args:
- config (Dict): A dictionary containing the configuration for the predictor.
- Returns:
- None
- """
- self.set_used_models_flag(config)
- text_det_model_config = config["SubModules"]["TextDetection"]
- self.text_det_model = self.create_model(text_det_model_config)
- text_rec_model_config = config["SubModules"]["TextRecognition"]
- self.text_rec_model = self.create_model(text_rec_model_config)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config["SubPipelines"]["DocPreprocessor"]
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- # Just for initialize the predictor
- if self.use_textline_orientation:
- textline_orientation_config = config["SubModules"]["TextLineOrientation"]
- self.textline_orientation_model = self.create_model(
- textline_orientation_config
- )
- return
- def rotate_image(
- self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
- ) -> List[np.ndarray]:
- """
- Rotate the given image arrays by their corresponding angles.
- 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
- Args:
- image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
- rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
- 0 means rotate by 0 degrees
- 1 means rotate by 180 degrees
- Returns:
- List[np.ndarray]: A list of rotated image arrays.
- Raises:
- AssertionError: If any rotate_angle is not 0 or 1.
- AssertionError: If the lengths of input lists don't match.
- """
- assert len(image_array_list) == len(
- rotate_angle_list
- ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
- for angle in rotate_angle_list:
- assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
- rotated_images = []
- for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
- # Convert 0/1 indicator to actual rotation angle
- rotate_angle = rotate_indicator * 180
- rotated_image = rotate(image_array, rotate_angle, reshape=True)
- rotated_images.append(rotated_image)
- return rotated_images
- def check_input_params_valid(self, input_params: Dict) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- input_params (Dict): A dictionary containing input parameters.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if (
- input_params["use_textline_orientation"]
- and not self.use_textline_orientation
- ):
- logging.error(
- "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
- )
- return False
- return True
- def predict_doc_preprocessor_res(
- self, image_array: np.ndarray, input_params: dict
- ) -> tuple[DocPreprocessorResult, np.ndarray]:
- """
- Preprocess the document image based on input parameters.
- Args:
- image_array (np.ndarray): The input image array.
- input_params (dict): Dictionary containing preprocessing parameters.
- Returns:
- tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing
- result dictionary and the processed image array.
- """
- if input_params["use_doc_preprocessor"]:
- use_doc_orientation_classify = input_params["use_doc_orientation_classify"]
- use_doc_unwarping = input_params["use_doc_unwarping"]
- doc_preprocessor_res = next(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- else:
- doc_preprocessor_res = {}
- doc_preprocessor_image = image_array
- return doc_preprocessor_res, doc_preprocessor_image
- def predict(
- self,
- input: str | list[str] | np.ndarray | list[np.ndarray],
- use_doc_orientation_classify: bool = False,
- use_doc_unwarping: bool = False,
- use_textline_orientation: bool = False,
- **kwargs,
- ) -> OCRResult:
- """Predicts OCR results for the given input.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images or pdf(s).
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- OCRResult: An iterable of OCRResult objects, each containing the predicted text and other relevant information.
- """
- input_params = {
- "use_doc_preprocessor": self.use_doc_preprocessor,
- "use_doc_orientation_classify": use_doc_orientation_classify,
- "use_doc_unwarping": use_doc_unwarping,
- "use_textline_orientation": self.use_textline_orientation,
- }
- if use_doc_orientation_classify or use_doc_unwarping:
- input_params["use_doc_preprocessor"] = True
- else:
- input_params["use_doc_preprocessor"] = False
- if not self.check_input_params_valid(input_params):
- yield None
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- image_array = self.img_reader(batch_data)[0]
- img_id += 1
- doc_preprocessor_res, doc_preprocessor_image = (
- self.predict_doc_preprocessor_res(image_array, input_params)
- )
- det_res = next(self.text_det_model(doc_preprocessor_image))
- dt_polys = det_res["dt_polys"]
- dt_scores = det_res["dt_scores"]
- ########## [TODO] Need to confirm filtering thresholds for detection and recognition modules
- dt_polys = self._sort_boxes(dt_polys)
- single_img_res = {
- "doc_preprocessor_image": doc_preprocessor_image,
- "doc_preprocessor_res": doc_preprocessor_res,
- "dt_polys": dt_polys,
- "img_id": img_id,
- "input_params": input_params,
- "text_type": self.text_type,
- }
- single_img_res["rec_text"] = []
- single_img_res["rec_score"] = []
- if len(dt_polys) > 0:
- all_subs_of_img = list(
- self._crop_by_polys(doc_preprocessor_image, dt_polys)
- )
- # use textline orientation model
- if input_params["use_textline_orientation"]:
- angles = [
- textline_angle_info["class_ids"][0]
- for textline_angle_info in self.textline_orientation_model(
- all_subs_of_img
- )
- ]
- all_subs_of_img = self.rotate_image(all_subs_of_img, angles)
- for rec_res in self.text_rec_model(all_subs_of_img):
- single_img_res["rec_text"].append(rec_res["rec_text"])
- single_img_res["rec_score"].append(rec_res["rec_score"])
- yield OCRResult(single_img_res)
|