pipeline.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.image_classification.result import TopkResult
  18. from ...utils.hpi import HPIConfig
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from .._parallel import AutoParallelImageSimpleInferencePipeline
  21. from ..base import BasePipeline
  22. class _ImageClassificationPipeline(BasePipeline):
  23. """Image Classification Pipeline"""
  24. def __init__(
  25. self,
  26. config: Dict,
  27. device: str = None,
  28. pp_option: PaddlePredictorOption = None,
  29. use_hpip: bool = False,
  30. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  31. ) -> None:
  32. """
  33. Initializes the class with given configurations and options.
  34. Args:
  35. config (Dict): Configuration dictionary containing model and other parameters.
  36. device (str): The device to run the prediction on. Default is None.
  37. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  38. use_hpip (bool, optional): Whether to use the high-performance
  39. inference plugin (HPIP) by default. Defaults to False.
  40. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  41. The default high-performance inference configuration dictionary.
  42. Defaults to None.
  43. """
  44. super().__init__(
  45. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  46. )
  47. image_classification_model_config = config["SubModules"]["ImageClassification"]
  48. model_kwargs = {}
  49. if (topk := image_classification_model_config.get("topk", None)) is not None:
  50. model_kwargs = {"topk": topk}
  51. self.image_classification_model = self.create_model(
  52. image_classification_model_config, **model_kwargs
  53. )
  54. self.topk = image_classification_model_config.get("topk", 5)
  55. def predict(
  56. self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], **kwargs
  57. ) -> TopkResult:
  58. """Predicts image classification results for the given input.
  59. Args:
  60. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  61. **kwargs: Additional keyword arguments that can be passed to the function.
  62. Returns:
  63. TopkResult: The predicted top k results.
  64. """
  65. topk = kwargs.pop("topk", self.topk)
  66. yield from self.image_classification_model(input, topk=topk)
  67. @pipeline_requires_extra("cv")
  68. class ImageClassificationPipeline(AutoParallelImageSimpleInferencePipeline):
  69. entities = "image_classification"
  70. @property
  71. def _pipeline_cls(self):
  72. return _ImageClassificationPipeline
  73. def _get_batch_size(self, config):
  74. return config["SubModules"]["ImageClassification"].get("batch_size", 1)