| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import copy
- import os.path as osp
- import six
- import sys
- import numpy as np
- from paddlex.utils import logging, is_pic, get_num_workers
- from .voc import VOCDetection
- from paddlex.cv.transforms import MixupImage
- class CocoDetection(VOCDetection):
- """读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。
- Args:
- data_dir (str): 数据集所在的目录路径。
- ann_file (str): 数据集的标注文件,为一个独立的json格式文件。
- transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- allow_empty (bool): 是否加载负样本。默认为False。
- empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。
- """
- def __init__(self,
- data_dir,
- ann_file,
- transforms=None,
- num_workers='auto',
- shuffle=False,
- allow_empty=False,
- empty_ratio=1.):
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- try:
- import shapely.ops
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
- except:
- six.reraise(*sys.exc_info())
- super(VOCDetection, self).__init__()
- self.data_dir = data_dir
- self.data_fields = None
- self.transforms = copy.deepcopy(transforms)
- self.num_max_boxes = 50
- self.use_mix = False
- if self.transforms is not None:
- for op in self.transforms.transforms:
- if isinstance(op, MixupImage):
- self.mixup_op = copy.deepcopy(op)
- self.use_mix = True
- self.num_max_boxes *= 2
- break
- self.batch_transforms = None
- self.num_workers = get_num_workers(num_workers)
- self.shuffle = shuffle
- self.allow_empty = allow_empty
- self.empty_ratio = empty_ratio
- self.file_list = list()
- neg_file_list = list()
- self.labels = list()
- coco = COCO(ann_file)
- self.coco_gt = coco
- img_ids = sorted(coco.getImgIds())
- cat_ids = coco.getCatIds()
- catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
- cname2clsid = dict({
- coco.loadCats(catid)[0]['name']: clsid
- for catid, clsid in catid2clsid.items()
- })
- for label, cid in sorted(cname2clsid.items(), key=lambda d: d[1]):
- self.labels.append(label)
- logging.info("Starting to read file list from dataset...")
- ct = 0
- for img_id in img_ids:
- is_empty = False
- img_anno = coco.loadImgs(img_id)[0]
- im_fname = osp.join(data_dir, img_anno['file_name'])
- if not is_pic(im_fname):
- continue
- im_w = float(img_anno['width'])
- im_h = float(img_anno['height'])
- ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
- instances = coco.loadAnns(ins_anno_ids)
- bboxes = []
- for inst in instances:
- x, y, box_w, box_h = inst['bbox']
- x1 = max(0, x)
- y1 = max(0, y)
- x2 = min(im_w - 1, x1 + max(0, box_w))
- y2 = min(im_h - 1, y1 + max(0, box_h))
- if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
- inst['clean_bbox'] = [x1, y1, x2, y2]
- bboxes.append(inst)
- else:
- logging.warning(
- "Found an invalid bbox in annotations: "
- "im_id: {}, area: {} x1: {}, y1: {}, x2: {}, y2: {}."
- .format(img_id, float(inst['area']), x1, y1, x2, y2))
- num_bbox = len(bboxes)
- if num_bbox == 0 and not self.allow_empty:
- continue
- elif num_bbox == 0:
- is_empty = True
- gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
- gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_score = np.ones((num_bbox, 1), dtype=np.float32)
- is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
- difficult = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_poly = [None] * num_bbox
- has_segmentation = False
- for i, box in reversed(list(enumerate(bboxes))):
- catid = box['category_id']
- gt_class[i][0] = catid2clsid[catid]
- gt_bbox[i, :] = box['clean_bbox']
- is_crowd[i][0] = box['iscrowd']
- if 'segmentation' in box and box['iscrowd'] == 1:
- gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
- elif 'segmentation' in box and box['segmentation']:
- if not np.array(box[
- 'segmentation']).size > 0 and not self.allow_empty:
- gt_poly.pop(i)
- is_crowd = np.delete(is_crowd, i)
- gt_class = np.delete(gt_class, i)
- gt_bbox = np.delete(gt_bbox, i)
- else:
- gt_poly[i] = box['segmentation']
- has_segmentation = True
- if has_segmentation and not any(gt_poly) and not self.allow_empty:
- continue
- im_info = {
- 'im_id': np.array([img_id]).astype('int32'),
- 'image_shape': np.array([im_h, im_w]).astype('int32'),
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'gt_poly': gt_poly,
- 'difficult': difficult
- }
- if is_empty:
- neg_file_list.append({
- 'image': im_fname,
- **
- im_info,
- **
- label_info
- })
- else:
- self.file_list.append({
- 'image': im_fname,
- **
- im_info,
- **
- label_info
- })
- ct += 1
- if self.use_mix:
- self.num_max_boxes = max(self.num_max_boxes,
- 2 * len(instances))
- else:
- self.num_max_boxes = max(self.num_max_boxes, len(instances))
- if not ct:
- logging.error(
- "No coco record found in %s' % (ann_file)", exit=True)
- self.pos_num = len(self.file_list)
- if self.allow_empty:
- self.file_list += self._sample_empty(neg_file_list)
- logging.info(
- "{} samples in file {}, including {} positive samples and {} negative samples.".
- format(
- len(self.file_list), ann_file, self.pos_num,
- len(self.file_list) - self.pos_num))
- self.num_samples = len(self.file_list)
- self._epoch = 0
|