| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- import paddle.nn as nn
- import paddle.optimizer as optimizer
- import paddle.regularizer as regularizer
- from paddlex.ppdet.core.workspace import register, serializable
- __all__ = ['LearningRate', 'OptimizerBuilder']
- from paddlex.ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- @serializable
- class CosineDecay(object):
- """
- Cosine learning rate decay
- Args:
- max_epochs (int): max epochs for the training process.
- if you commbine cosine decay with warmup, it is recommended that
- the max_iters is much larger than the warmup iter
- """
- def __init__(self, max_epochs=1000, use_warmup=True):
- self.max_epochs = max_epochs
- self.use_warmup = use_warmup
- def __call__(self,
- base_lr=None,
- boundary=None,
- value=None,
- step_per_epoch=None):
- assert base_lr is not None, "either base LR or values should be provided"
- max_iters = self.max_epochs * int(step_per_epoch)
- if boundary is not None and value is not None and self.use_warmup:
- for i in range(int(boundary[-1]), max_iters):
- boundary.append(i)
- decayed_lr = base_lr * 0.5 * (
- math.cos(i * math.pi / max_iters) + 1)
- value.append(decayed_lr)
- return optimizer.lr.PiecewiseDecay(boundary, value)
- return optimizer.lr.CosineAnnealingDecay(base_lr, T_max=max_iters)
- @serializable
- class PiecewiseDecay(object):
- """
- Multi step learning rate decay
- Args:
- gamma (float | list): decay factor
- milestones (list): steps at which to decay learning rate
- """
- def __init__(self,
- gamma=[0.1, 0.01],
- milestones=[8, 11],
- values=None,
- use_warmup=True):
- super(PiecewiseDecay, self).__init__()
- if type(gamma) is not list:
- self.gamma = []
- for i in range(len(milestones)):
- self.gamma.append(gamma / 10**i)
- else:
- self.gamma = gamma
- self.milestones = milestones
- self.values = values
- self.use_warmup = use_warmup
- def __call__(self,
- base_lr=None,
- boundary=None,
- value=None,
- step_per_epoch=None):
- if boundary is not None and self.use_warmup:
- boundary.extend([int(step_per_epoch) * i for i in self.milestones])
- else:
- # do not use LinearWarmup
- boundary = [int(step_per_epoch) * i for i in self.milestones]
- value = [base_lr] # during step[0, boundary[0]] is base_lr
- # self.values is setted directly in config
- if self.values is not None:
- assert len(self.milestones) + 1 == len(self.values)
- return optimizer.lr.PiecewiseDecay(boundary, self.values)
- # value is computed by self.gamma
- value = value if value is not None else [base_lr]
- for i in self.gamma:
- value.append(base_lr * i)
- return optimizer.lr.PiecewiseDecay(boundary, value)
- @serializable
- class LinearWarmup(object):
- """
- Warm up learning rate linearly
- Args:
- steps (int): warm up steps
- start_factor (float): initial learning rate factor
- """
- def __init__(self, steps=500, start_factor=1. / 3):
- super(LinearWarmup, self).__init__()
- self.steps = steps
- self.start_factor = start_factor
- def __call__(self, base_lr, step_per_epoch):
- boundary = []
- value = []
- for i in range(self.steps + 1):
- if self.steps > 0:
- alpha = i / self.steps
- factor = self.start_factor * (1 - alpha) + alpha
- lr = base_lr * factor
- value.append(lr)
- if i > 0:
- boundary.append(i)
- return boundary, value
- @serializable
- class BurninWarmup(object):
- """
- Warm up learning rate in burnin mode
- Args:
- steps (int): warm up steps
- """
- def __init__(self, steps=1000):
- super(BurninWarmup, self).__init__()
- self.steps = steps
- def __call__(self, base_lr, step_per_epoch):
- boundary = []
- value = []
- burnin = min(self.steps, step_per_epoch)
- for i in range(burnin + 1):
- factor = (i * 1.0 / burnin)**4
- lr = base_lr * factor
- value.append(lr)
- if i > 0:
- boundary.append(i)
- return boundary, value
- @register
- class LearningRate(object):
- """
- Learning Rate configuration
- Args:
- base_lr (float): base learning rate
- schedulers (list): learning rate schedulers
- """
- __category__ = 'optim'
- def __init__(self,
- base_lr=0.01,
- schedulers=[PiecewiseDecay(), LinearWarmup()]):
- super(LearningRate, self).__init__()
- self.base_lr = base_lr
- self.schedulers = schedulers
- def __call__(self, step_per_epoch):
- assert len(self.schedulers) >= 1
- if not self.schedulers[0].use_warmup:
- return self.schedulers[0](base_lr=self.base_lr,
- step_per_epoch=step_per_epoch)
- # TODO: split warmup & decay
- # warmup
- boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
- # decay
- decay_lr = self.schedulers[0](self.base_lr, boundary, value,
- step_per_epoch)
- return decay_lr
- @register
- class OptimizerBuilder():
- """
- Build optimizer handles
- Args:
- regularizer (object): an `Regularizer` instance
- optimizer (object): an `Optimizer` instance
- """
- __category__ = 'optim'
- def __init__(self,
- clip_grad_by_norm=None,
- regularizer={'type': 'L2',
- 'factor': .0001},
- optimizer={'type': 'Momentum',
- 'momentum': .9}):
- self.clip_grad_by_norm = clip_grad_by_norm
- self.regularizer = regularizer
- self.optimizer = optimizer
- def __call__(self, learning_rate, params=None):
- if self.clip_grad_by_norm is not None:
- grad_clip = nn.ClipGradByGlobalNorm(
- clip_norm=self.clip_grad_by_norm)
- else:
- grad_clip = None
- if self.regularizer and self.regularizer != 'None':
- reg_type = self.regularizer['type'] + 'Decay'
- reg_factor = self.regularizer['factor']
- regularization = getattr(regularizer, reg_type)(reg_factor)
- else:
- regularization = None
- optim_args = self.optimizer.copy()
- optim_type = optim_args['type']
- del optim_args['type']
- if optim_type != 'AdamW':
- optim_args['weight_decay'] = regularization
- op = getattr(optimizer, optim_type)
- return op(learning_rate=learning_rate,
- parameters=params,
- grad_clip=grad_clip,
- **optim_args)
- class ModelEMA(object):
- def __init__(self, decay, model, use_thres_step=False):
- self.step = 0
- self.decay = decay
- self.state_dict = dict()
- for k, v in model.state_dict().items():
- self.state_dict[k] = paddle.zeros_like(v)
- self.use_thres_step = use_thres_step
- def update(self, model):
- if self.use_thres_step:
- decay = min(self.decay, (1 + self.step) / (10 + self.step))
- else:
- decay = self.decay
- self._decay = decay
- model_dict = model.state_dict()
- for k, v in self.state_dict.items():
- v = decay * v + (1 - decay) * model_dict[k]
- v.stop_gradient = True
- self.state_dict[k] = v
- self.step += 1
- def apply(self):
- if self.step == 0:
- return self.state_dict
- state_dict = dict()
- for k, v in self.state_dict.items():
- v = v / (1 - self._decay**self.step)
- v.stop_gradient = True
- state_dict[k] = v
- return state_dict
|