| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.text_recognition.model_list import MODELS
- from ..components import *
- from .base import BasePredictor
- class TextRecPredictor(BasePredictor):
- entities = MODELS
- INPUT_KEYS = "x"
- OUTPUT_KEYS = "text_rec_res"
- DEAULT_INPUTS = {"x": "x"}
- DEAULT_OUTPUTS = {"text_rec_res": "text_rec_res"}
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- ops = {}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP.get(tf_key)
- args = cfg.get(tf_key, {})
- op = func(self, **args) if args else func(self)
- if op:
- ops[tf_key] = op
- kernel_option = PaddlePredictorOption()
- # kernel_option.set_device(self.device)
- predictor = ImagePredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=kernel_option,
- )
- predictor.set_inputs({"imgs": "img"})
- ops["predictor"] = predictor
- key, op = self.build_postprocess(**self.config["PostProcess"])
- ops[key] = op
- return ops
- @register("DecodeImage")
- def build_readimg(self, channel_first, img_mode):
- assert channel_first == False
- return ReadImage(format=img_mode, batch_size=self.kwargs.get("batch_size", 1))
- @register("RecResizeImg")
- def build_resize(self, image_shape):
- return OCRReisizeNormImg(rec_image_shape=image_shape)
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "CTCLabelDecode":
- return "CTCLabelDecode", CTCLabelDecode(
- character_list=kwargs.get("character_dict"),
- )
- else:
- raise Exception()
- @register("MultiLabelEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None
|