| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from abc import abstractmethod
- import lazy_paddle as paddle
- import numpy as np
- from ..base import BaseComponent
- from ....utils import logging
- class BasePaddlePredictor(BaseComponent):
- """Predictor based on Paddle Inference"""
- OUTPUT_KEYS = "pred"
- DEAULT_OUTPUTS = {"pred": "pred"}
- ENABLE_BATCH = True
- def __init__(self, model_dir, model_prefix, option):
- super().__init__()
- (
- self.predictor,
- self.inference_config,
- self.input_names,
- self.input_handlers,
- self.output_handlers,
- ) = self._create(model_dir, model_prefix, option)
- def _create(self, model_dir, model_prefix, option):
- """_create"""
- from lazy_paddle.inference import Config, create_predictor
- use_pir = (
- hasattr(paddle.framework, "use_pir_api") and paddle.framework.use_pir_api()
- )
- model_postfix = ".json" if use_pir else ".pdmodel"
- model_file = (model_dir / f"{model_prefix}{model_postfix}").as_posix()
- params_file = (model_dir / f"{model_prefix}.pdiparams").as_posix()
- config = Config(model_file, params_file)
- if option.device == "gpu":
- config.enable_use_gpu(200, option.device_id)
- if paddle.is_compiled_with_rocm():
- os.environ["FLAGS_conv_workspace_size_limit"] = "2000"
- elif hasattr(config, "enable_new_ir"):
- config.enable_new_ir(option.enable_new_ir)
- elif option.device == "npu":
- config.enable_custom_device("npu")
- os.environ["FLAGS_npu_jit_compile"] = "0"
- os.environ["FLAGS_use_stride_kernel"] = "0"
- os.environ["FLAGS_allocator_strategy"] = "auto_growth"
- os.environ["CUSTOM_DEVICE_BLACK_LIST"] = (
- "pad3d,pad3d_grad,set_value,set_value_with_tensor"
- )
- os.environ["FLAGS_npu_scale_aclnn"] = "True"
- os.environ["FLAGS_npu_split_aclnn"] = "True"
- elif option.device == "xpu":
- os.environ["BKCL_FORCE_SYNC"] = "1"
- os.environ["BKCL_TIMEOUT"] = "1800"
- os.environ["FLAGS_use_stride_kernel"] = "0"
- elif option.device == "mlu":
- config.enable_custom_device("mlu")
- os.environ["FLAGS_use_stride_kernel"] = "0"
- else:
- assert option.device == "cpu"
- config.disable_gpu()
- config.enable_new_ir(option.enable_new_ir)
- config.enable_new_executor(True)
- if "mkldnn" in option.run_mode:
- try:
- config.enable_mkldnn()
- config.set_cpu_math_library_num_threads(option.cpu_threads)
- if "bf16" in option.run_mode:
- config.enable_mkldnn_bfloat16()
- except Exception as e:
- logging.warning(
- "MKL-DNN is not available. We will disable MKL-DNN."
- )
- precision_map = {
- "trt_int8": Config.Precision.Int8,
- "trt_fp32": Config.Precision.Float32,
- "trt_fp16": Config.Precision.Half,
- }
- if option.run_mode in precision_map.keys():
- config.enable_tensorrt_engine(
- workspace_size=(1 << 25) * option.batch_size,
- max_batch_size=option.batch_size,
- min_subgraph_size=option.min_subgraph_size,
- precision_mode=precision_map[option.run_mode],
- trt_use_static=option.trt_use_static,
- use_calib_mode=option.trt_calib_mode,
- )
- if option.shape_info_filename is not None:
- if not os.path.exists(option.shape_info_filename):
- config.collect_shape_range_info(option.shape_info_filename)
- logging.info(
- f"Dynamic shape info is collected into: {option.shape_info_filename}"
- )
- else:
- logging.info(
- f"A dynamic shape info file ( {option.shape_info_filename} ) already exists. \
- No need to generate again."
- )
- config.enable_tuned_tensorrt_dynamic_shape(
- option.shape_info_filename, True
- )
- # Disable paddle inference logging
- config.disable_glog_info()
- for del_p in option.delete_pass:
- config.delete_pass(del_p)
- # Enable shared memory
- config.enable_memory_optim()
- config.switch_ir_optim(True)
- # Disable feed, fetch OP, needed by zero_copy_run
- config.switch_use_feed_fetch_ops(False)
- predictor = create_predictor(config)
- # Get input and output handlers
- input_names = predictor.get_input_names()
- input_names.sort()
- input_handlers = []
- output_handlers = []
- for input_name in input_names:
- input_handler = predictor.get_input_handle(input_name)
- input_handlers.append(input_handler)
- output_names = predictor.get_output_names()
- for output_name in output_names:
- output_handler = predictor.get_output_handle(output_name)
- output_handlers.append(output_handler)
- return predictor, config, input_names, input_handlers, output_handlers
- def get_input_names(self):
- """get input names"""
- return self.input_names
- def apply(self, **kwargs):
- x = self.to_batch(**kwargs)
- for idx in range(len(x)):
- self.input_handlers[idx].reshape(x[idx].shape)
- self.input_handlers[idx].copy_from_cpu(x[idx])
- self.predictor.run()
- output = []
- for out_tensor in self.output_handlers:
- batch = out_tensor.copy_to_cpu()
- output.append(batch)
- return self.format_output(output)
- def format_output(self, pred):
- return [{"pred": res} for res in zip(*pred)]
- @abstractmethod
- def to_batch(self):
- raise NotImplementedError
- class ImagePredictor(BasePaddlePredictor):
- INPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- def to_batch(self, img):
- return [np.stack(img, axis=0).astype(dtype=np.float32, copy=False)]
- class ImageDetPredictor(BasePaddlePredictor):
- INPUT_KEYS = [["img", "scale_factors"], ["img", "scale_factors", "img_size"]]
- OUTPUT_KEYS = [["boxes"], ["boxes", "masks"]]
- DEAULT_INPUTS = {"img": "img", "scale_factors": "scale_factors"}
- DEAULT_OUTPUTS = {"boxes": "boxes"}
- def to_batch(self, img, scale_factors, img_size=None):
- scale_factors = [scale_factor[::-1] for scale_factor in scale_factors]
- if img_size is None:
- return [
- np.stack(img, axis=0).astype(dtype=np.float32, copy=False),
- np.stack(scale_factors, axis=0).astype(dtype=np.float32, copy=False),
- ]
- else:
- return [
- np.stack(img_size, axis=0).astype(dtype=np.float32, copy=False),
- np.stack(img, axis=0).astype(dtype=np.float32, copy=False),
- np.stack(scale_factors, axis=0).astype(dtype=np.float32, copy=False),
- ]
- def format_output(self, pred):
- box_idx_start = 0
- pred_box = []
- if len(pred) == 3:
- pred_mask = []
- for idx in range(len(pred[1])):
- np_boxes_num = pred[1][idx]
- box_idx_end = box_idx_start + np_boxes_num
- np_boxes = pred[0][box_idx_start:box_idx_end]
- pred_box.append(np_boxes)
- if len(pred) == 3:
- np_masks = pred[2][box_idx_start:box_idx_end]
- pred_mask.append(np_masks)
- box_idx_start = box_idx_end
- boxes = [{"boxes": np.array(res)} for res in pred_box]
- if len(pred) == 3:
- masks = [{"masks": np.array(res)} for res in pred_mask]
- return [{"boxes": boxes[0]["boxes"], "masks": masks[0]["masks"]}]
- else:
- return [{"boxes": np.array(res)} for res in pred_box]
- class ImageInstanceSegPredictor(ImageDetPredictor):
- DEAULT_INPUTS = {
- "img": "img",
- "scale_factors": "scale_factors",
- "img_size": "img_size",
- }
- DEAULT_OUTPUTS = {"boxes": "boxes", "masks": "masks"}
- class TSPPPredictor(BasePaddlePredictor):
- INPUT_KEYS = "ts"
- DEAULT_INPUTS = {"ts": "ts"}
- def to_batch(self, ts):
- n = len(ts[0])
- x = [np.stack([lst[i] for lst in ts], axis=0) for i in range(n)]
- return x
|