9.train_yolov3_coco.py 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # coding:utf-8
  2. import os
  3. # 选择使用0号卡
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. import paddlex as pdx
  6. from paddlex import transforms as T
  7. # 定义训练和验证时的transforms
  8. train_transforms = T.Compose([
  9. T.BatchRandomResize(
  10. target_sizes=[
  11. 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704,
  12. 736, 768
  13. ],
  14. interp='RANDOM'), T.Normalize(
  15. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  16. ])
  17. eval_transforms = T.Compose([
  18. T.Resize(
  19. target_size=640, interp='CUBIC'), T.Normalize(
  20. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  21. ])
  22. # 定义训练和验证所用的数据集
  23. train_dataset = pdx.datasets.VOCDetection(
  24. data_dir='/home/aistudio/dataset',
  25. file_list='/home/aistudio/dataset/train_list.txt',
  26. label_list='/home/aistudio/dataset/labels.txt',
  27. transforms=train_transforms,
  28. num_workers=0,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.VOCDetection(
  31. data_dir='/home/aistudio/dataset',
  32. file_list='/home/aistudio/dataset/val_list.txt',
  33. label_list='/home/aistudio/dataset/labels.txt',
  34. transforms=eval_transforms,
  35. num_workers=0,
  36. shuffle=False)
  37. # 初始化模型,并进行训练
  38. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
  39. num_classes = len(train_dataset.labels)
  40. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  41. model.train(
  42. num_epochs=270,
  43. train_dataset=train_dataset,
  44. train_batch_size=16,
  45. eval_dataset=eval_dataset,
  46. pretrain_weights='COCO',
  47. learning_rate=0.001 / 4,
  48. warmup_steps=1000,
  49. warmup_start_lr=0.0,
  50. lr_decay_epochs=[216, 243],
  51. save_interval_epochs=5,
  52. save_dir='output/yolov3_darknet53_coco')