| 12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压蔬菜分类数据集
- veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(veg_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
- train_transforms = T.Compose(
- [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
- eval_transforms = T.Compose([
- T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/imagenet.py#L21
- train_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/val_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=eval_transforms)
- # 加载模型
- model = pdx.load_model('output/mobilenet_v2/best_model')
- # 在线量化
- model.quant_aware_train(
- num_epochs=5,
- train_dataset=train_dataset,
- train_batch_size=32,
- eval_dataset=eval_dataset,
- learning_rate=0.000025,
- save_dir='output/mobilenet_v2/quant',
- use_vdl=True)
|