TimesNet_ad.yaml 857 B

12345678910111213141516171819202122232425262728293031323334353637
  1. Global:
  2. model: TimesNet_ad
  3. mode: check_dataset # check_dataset/train/evaluate/predict
  4. dataset_dir: "/paddle/dataset/paddlex/ts_ad/ts_anomaly_examples/"
  5. device: gpu:0
  6. output: "output"
  7. CheckDataset:
  8. convert:
  9. enable: False
  10. src_dataset_type: null
  11. split:
  12. enable: False
  13. train_percent: null
  14. val_percent: null
  15. Train:
  16. time_col: timestamp
  17. feature_cols: feature_0,feature_1
  18. label_col: label
  19. freq: 1
  20. input_len: 96
  21. epochs_iters: 20
  22. batch_size: 16
  23. learning_rate: 0.0005
  24. log_interval: 10
  25. Evaluate:
  26. weight_path: "output/best_model/model.pdparams"
  27. Export:
  28. weight_path: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/TimesNet_ad.pdparams.tar
  29. Predict:
  30. batch_size: 1
  31. model_dir: "output/inference"
  32. input: "https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_ad.csv"