| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import List, Optional, Sequence, Tuple, Union
- import numpy as np
- from numpy import ndarray
- from ....utils.deps import class_requires_deps, is_dep_available
- from ...utils.benchmark import benchmark
- from ..object_detection.processors import get_affine_transform
- if is_dep_available("opencv-contrib-python"):
- import cv2
- Number = Union[int, float]
- Kpts = List[dict]
- def get_warp_matrix(
- theta: float, size_input: ndarray, size_dst: ndarray, size_target: ndarray
- ) -> ndarray:
- """This code is based on
- https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
- Calculate the transformation matrix under the constraint of unbiased.
- Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
- Data Processing for Human Pose Estimation (CVPR 2020).
- Args:
- theta (float): Rotation angle in degrees.
- size_input (np.ndarray): Size of input image [w, h].
- size_dst (np.ndarray): Size of output image [w, h].
- size_target (np.ndarray): Size of ROI in input plane [w, h].
- Returns:
- matrix (np.ndarray): A matrix for transformation.
- """
- theta = np.deg2rad(theta)
- matrix = np.zeros((2, 3), dtype=np.float32)
- scale_x = size_dst[0] / size_target[0]
- scale_y = size_dst[1] / size_target[1]
- matrix[0, 0] = np.cos(theta) * scale_x
- matrix[0, 1] = -np.sin(theta) * scale_x
- matrix[0, 2] = scale_x * (
- -0.5 * size_input[0] * np.cos(theta)
- + 0.5 * size_input[1] * np.sin(theta)
- + 0.5 * size_target[0]
- )
- matrix[1, 0] = np.sin(theta) * scale_y
- matrix[1, 1] = np.cos(theta) * scale_y
- matrix[1, 2] = scale_y * (
- -0.5 * size_input[0] * np.sin(theta)
- - 0.5 * size_input[1] * np.cos(theta)
- + 0.5 * size_target[1]
- )
- return matrix
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class TopDownAffine:
- """refer to https://github.com/open-mmlab/mmpose/blob/71ec36ebd63c475ab589afc817868e749a61491f/mmpose/datasets/transforms/topdown_transforms.py#L13
- Get the bbox image as the model input by affine transform.
- Args:
- input_size (Tuple[int, int]): The input image size of the model in
- [w, h]. The bbox region will be cropped and resize to `input_size`
- use_udp (bool): Whether use unbiased data processing. See
- `UDP (CVPR 2020)`_ for details. Defaults to ``False``
- .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
- """
- def __init__(self, input_size: Tuple[int, int], use_udp: bool = False):
- assert (
- all([isinstance(i, int) for i in input_size]) and len(input_size) == 2
- ), f"Invalid input_size {input_size}"
- self.input_size = input_size
- self.use_udp = use_udp
- def apply(
- self,
- img: ndarray,
- center: Optional[Union[Tuple[Number, Number], ndarray]] = None,
- scale: Optional[Union[Tuple[Number, Number], ndarray]] = None,
- ) -> Tuple[ndarray, ndarray, ndarray]:
- """Applies a wrapaffine to the input image based on the specified center, scale.
- Args:
- img (ndarray): The input image as a NumPy ndarray.
- center (Optional[Union[Tuple[Number, Number], ndarray]], optional): Center of the bounding box (x, y)
- scale (Optional[Union[Tuple[Number, Number], ndarray]], optional): Scale of the bounding box
- wrt [width, height].
- Returns:
- Tuple[ndarray, ndarray, ndarray]: The transformed image,
- the center used for the transformation, and the scale used for the transformation.
- """
- rot = 0
- imshape = np.array(img.shape[:2][::-1])
- if isinstance(center, Sequence):
- center = np.array(center)
- if isinstance(scale, Sequence):
- scale = np.array(scale)
- center = center if center is not None else imshape / 2.0
- scale = scale if scale is not None else imshape
- if self.use_udp:
- trans = get_warp_matrix(
- rot,
- center * 2.0,
- [self.input_size[0] - 1.0, self.input_size[1] - 1.0],
- scale,
- )
- img = cv2.warpAffine(
- img,
- trans,
- (int(self.input_size[0]), int(self.input_size[1])),
- flags=cv2.INTER_LINEAR,
- )
- else:
- trans = get_affine_transform(center, scale, rot, self.input_size)
- img = cv2.warpAffine(
- img,
- trans,
- (int(self.input_size[0]), int(self.input_size[1])),
- flags=cv2.INTER_LINEAR,
- )
- return img, center, scale
- def __call__(self, datas: List[dict]) -> List[dict]:
- for data in datas:
- ori_img = data["img"]
- if "ori_img" not in data:
- data["ori_img"] = ori_img
- if "ori_img_size" not in data:
- data["ori_img_size"] = [ori_img.shape[1], ori_img.shape[0]]
- img, center, scale = self.apply(
- ori_img, data.get("center", None), data.get("scale", None)
- )
- data["img"] = img
- data["center"] = center
- data["scale"] = scale
- img_size = [img.shape[1], img.shape[0]]
- data["img_size"] = img_size # [size_w, size_h]
- return datas
- def affine_transform(pt: ndarray, t: ndarray):
- """Apply an affine transformation to a 2D point.
- Args:
- pt (numpy.ndarray): A 2D point represented as a 2-element array.
- t (numpy.ndarray): A 3x3 affine transformation matrix.
- Returns:
- numpy.ndarray: The transformed 2D point.
- """
- new_pt = np.array([pt[0], pt[1], 1.0]).T
- new_pt = np.dot(t, new_pt)
- return new_pt[:2]
- def transform_preds(
- coords: ndarray,
- center: Tuple[float, float],
- scale: Tuple[float, float],
- output_size: Tuple[int, int],
- ) -> ndarray:
- """Transform coordinates to the target space using an affine transformation.
- Args:
- coords (numpy.ndarray): Original coordinates, shape (N, 2).
- center (tuple): Center point for the transformation.
- scale (tuple): Scale factor for the transformation.
- output_size (tuple): Size of the output space.
- Returns:
- numpy.ndarray: Transformed coordinates, shape (N, 2).
- """
- target_coords = np.zeros(coords.shape)
- trans = get_affine_transform(center, scale, 0, output_size, inv=1)
- for p in range(coords.shape[0]):
- target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
- return target_coords
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class KptPostProcess:
- """Save Result Transform"""
- def __init__(self, use_dark=True):
- self.use_dark = use_dark
- def apply(self, heatmap: ndarray, center: ndarray, scale: ndarray) -> Kpts:
- """apply"""
- # TODO: add batch support
- heatmap, center, scale = heatmap[None, ...], center[None, ...], scale[None, ...]
- preds, maxvals = self.get_final_preds(heatmap, center, scale)
- keypoints, scores = np.concatenate((preds, maxvals), axis=-1), np.mean(
- maxvals.squeeze(-1), axis=1
- )
- return [
- {"keypoints": kpt, "kpt_score": score}
- for kpt, score in zip(keypoints, scores)
- ]
- def __call__(self, batch_outputs: List[dict], datas: List[dict]) -> List[Kpts]:
- """Apply the post-processing to a batch of outputs.
- Args:
- batch_outputs (List[dict]): The list of detection outputs.
- datas (List[dict]): The list of input data.
- Returns:
- List[dict]: The list of post-processed keypoints.
- """
- return [
- self.apply(output["heatmap"], data["center"], data["scale"])
- for data, output in zip(datas, batch_outputs)
- ]
- def get_final_preds(
- self, heatmaps: ndarray, center: ndarray, scale: ndarray, kernelsize: int = 3
- ):
- """the highest heatvalue location with a quarter offset in the
- direction from the highest response to the second highest response.
- Args:
- heatmaps (numpy.ndarray): The predicted heatmaps
- center (numpy.ndarray): The boxes center
- scale (numpy.ndarray): The scale factor
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
- """
- coords, maxvals = self.get_max_preds(heatmaps)
- heatmap_height = heatmaps.shape[2]
- heatmap_width = heatmaps.shape[3]
- if self.use_dark:
- coords = self.dark_postprocess(heatmaps, coords, kernelsize)
- else:
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- hm = heatmaps[n][p]
- px = int(math.floor(coords[n][p][0] + 0.5))
- py = int(math.floor(coords[n][p][1] + 0.5))
- if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
- diff = np.array(
- [
- hm[py][px + 1] - hm[py][px - 1],
- hm[py + 1][px] - hm[py - 1][px],
- ]
- )
- coords[n][p] += np.sign(diff) * 0.25
- preds = coords.copy()
- # Transform back
- for i in range(coords.shape[0]):
- preds[i] = transform_preds(
- coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
- )
- return preds, maxvals
- def get_max_preds(self, heatmaps: ndarray) -> Tuple[ndarray, ndarray]:
- """get predictions from score maps
- Args:
- heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
- """
- assert isinstance(heatmaps, np.ndarray), "heatmaps should be numpy.ndarray"
- assert heatmaps.ndim == 4, "batch_images should be 4-ndim"
- batch_size = heatmaps.shape[0]
- num_joints = heatmaps.shape[1]
- width = heatmaps.shape[3]
- heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
- idx = np.argmax(heatmaps_reshaped, 2)
- maxvals = np.amax(heatmaps_reshaped, 2)
- maxvals = maxvals.reshape((batch_size, num_joints, 1))
- idx = idx.reshape((batch_size, num_joints, 1))
- preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
- preds[:, :, 0] = (preds[:, :, 0]) % width
- preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
- pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
- pred_mask = pred_mask.astype(np.float32)
- preds *= pred_mask
- return preds, maxvals
- def gaussian_blur(self, heatmap: ndarray, kernel: int) -> ndarray:
- border = (kernel - 1) // 2
- batch_size = heatmap.shape[0]
- num_joints = heatmap.shape[1]
- height = heatmap.shape[2]
- width = heatmap.shape[3]
- for i in range(batch_size):
- for j in range(num_joints):
- origin_max = np.max(heatmap[i, j])
- dr = np.zeros((height + 2 * border, width + 2 * border))
- dr[border:-border, border:-border] = heatmap[i, j].copy()
- dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
- heatmap[i, j] = dr[border:-border, border:-border].copy()
- heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
- return heatmap
- def dark_parse(self, hm: ndarray, coord: ndarray):
- heatmap_height = hm.shape[0]
- heatmap_width = hm.shape[1]
- px = int(coord[0])
- py = int(coord[1])
- if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
- dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
- dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
- dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
- dxy = 0.25 * (
- hm[py + 1][px + 1]
- - hm[py - 1][px + 1]
- - hm[py + 1][px - 1]
- + hm[py - 1][px - 1]
- )
- dyy = 0.25 * (hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
- derivative = np.matrix([[dx], [dy]])
- hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
- if dxx * dyy - dxy**2 != 0:
- hessianinv = hessian.I
- offset = -hessianinv * derivative
- offset = np.squeeze(np.array(offset.T), axis=0)
- coord += offset
- return coord
- def dark_postprocess(
- self, hm: ndarray, coords: ndarray, kernelsize: int
- ) -> ndarray:
- """
- refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
- """
- hm = self.gaussian_blur(hm, kernelsize)
- hm = np.maximum(hm, 1e-10)
- hm = np.log(hm)
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
- return coords
|