pipeline.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Tuple, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...models.object_detection.result import DetResult
  21. from ...utils.benchmark import benchmark
  22. from ...utils.hpi import HPIConfig
  23. from ...utils.pp_option import PaddlePredictorOption
  24. from .._parallel import AutoParallelImageSimpleInferencePipeline
  25. from ..base import BasePipeline
  26. from ..components import CropByBoxes
  27. from .result import SealRecognitionResult
  28. @benchmark.time_methods
  29. class _SealRecognitionPipeline(BasePipeline):
  30. """Seal Recognition Pipeline"""
  31. def __init__(
  32. self,
  33. config: Dict,
  34. device: str = None,
  35. pp_option: PaddlePredictorOption = None,
  36. use_hpip: bool = False,
  37. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  38. ) -> None:
  39. """Initializes the seal recognition pipeline.
  40. Args:
  41. config (Dict): Configuration dictionary containing various settings.
  42. device (str, optional): Device to run the predictions on. Defaults to None.
  43. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  44. use_hpip (bool, optional): Whether to use the high-performance
  45. inference plugin (HPIP) by default. Defaults to False.
  46. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  47. The default high-performance inference configuration dictionary.
  48. Defaults to None.
  49. """
  50. super().__init__(
  51. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  52. )
  53. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  54. if self.use_doc_preprocessor:
  55. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  56. "DocPreprocessor",
  57. {
  58. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  59. },
  60. )
  61. self.doc_preprocessor_pipeline = self.create_pipeline(
  62. doc_preprocessor_config
  63. )
  64. self.use_layout_detection = config.get("use_layout_detection", True)
  65. if self.use_layout_detection:
  66. layout_det_config = config.get("SubModules", {}).get(
  67. "LayoutDetection",
  68. {"model_config_error": "config error for layout_det_model!"},
  69. )
  70. layout_kwargs = {}
  71. if (threshold := layout_det_config.get("threshold", None)) is not None:
  72. layout_kwargs["threshold"] = threshold
  73. if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
  74. layout_kwargs["layout_nms"] = layout_nms
  75. if (
  76. layout_unclip_ratio := layout_det_config.get(
  77. "layout_unclip_ratio", None
  78. )
  79. ) is not None:
  80. layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
  81. if (
  82. layout_merge_bboxes_mode := layout_det_config.get(
  83. "layout_merge_bboxes_mode", None
  84. )
  85. ) is not None:
  86. layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
  87. self.layout_det_model = self.create_model(
  88. layout_det_config, **layout_kwargs
  89. )
  90. seal_ocr_config = config.get("SubPipelines", {}).get(
  91. "SealOCR", {"pipeline_config_error": "config error for seal_ocr_pipeline!"}
  92. )
  93. self.seal_ocr_pipeline = self.create_pipeline(seal_ocr_config)
  94. self._crop_by_boxes = CropByBoxes()
  95. self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
  96. self.img_reader = ReadImage(format="BGR")
  97. def check_model_settings_valid(
  98. self, model_settings: Dict, layout_det_res: DetResult
  99. ) -> bool:
  100. """
  101. Check if the input parameters are valid based on the initialized models.
  102. Args:
  103. model_settings (Dict): A dictionary containing input parameters.
  104. layout_det_res (DetResult): Layout detection result.
  105. Returns:
  106. bool: True if all required models are initialized according to input parameters, False otherwise.
  107. """
  108. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  109. logging.error(
  110. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  111. )
  112. return False
  113. if model_settings["use_layout_detection"]:
  114. if layout_det_res is not None:
  115. logging.error(
  116. "The layout detection model has already been initialized, please set use_layout_detection=False"
  117. )
  118. return False
  119. if not self.use_layout_detection:
  120. logging.error(
  121. "Set use_layout_detection, but the models for layout detection are not initialized."
  122. )
  123. return False
  124. return True
  125. def get_model_settings(
  126. self,
  127. use_doc_orientation_classify: Optional[bool],
  128. use_doc_unwarping: Optional[bool],
  129. use_layout_detection: Optional[bool],
  130. ) -> dict:
  131. """
  132. Get the model settings based on the provided parameters or default values.
  133. Args:
  134. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  135. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  136. use_layout_detection (Optional[bool]): Whether to use layout detection.
  137. Returns:
  138. dict: A dictionary containing the model settings.
  139. """
  140. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  141. use_doc_preprocessor = self.use_doc_preprocessor
  142. else:
  143. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  144. use_doc_preprocessor = True
  145. else:
  146. use_doc_preprocessor = False
  147. if use_layout_detection is None:
  148. use_layout_detection = self.use_layout_detection
  149. return dict(
  150. use_doc_preprocessor=use_doc_preprocessor,
  151. use_layout_detection=use_layout_detection,
  152. )
  153. def predict(
  154. self,
  155. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  156. use_doc_orientation_classify: Optional[bool] = None,
  157. use_doc_unwarping: Optional[bool] = None,
  158. use_layout_detection: Optional[bool] = None,
  159. layout_det_res: Optional[Union[DetResult, List[DetResult]]] = None,
  160. layout_threshold: Optional[Union[float, dict]] = None,
  161. layout_nms: Optional[bool] = None,
  162. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  163. layout_merge_bboxes_mode: Optional[str] = None,
  164. seal_det_limit_side_len: Optional[int] = None,
  165. seal_det_limit_type: Optional[str] = None,
  166. seal_det_thresh: Optional[float] = None,
  167. seal_det_box_thresh: Optional[float] = None,
  168. seal_det_unclip_ratio: Optional[float] = None,
  169. seal_rec_score_thresh: Optional[float] = None,
  170. **kwargs,
  171. ) -> SealRecognitionResult:
  172. model_settings = self.get_model_settings(
  173. use_doc_orientation_classify, use_doc_unwarping, use_layout_detection
  174. )
  175. if not self.check_model_settings_valid(model_settings, layout_det_res):
  176. yield {"error": "the input params for model settings are invalid!"}
  177. external_layout_det_results = layout_det_res
  178. if external_layout_det_results is not None:
  179. if not isinstance(external_layout_det_results, list):
  180. external_layout_det_results = [external_layout_det_results]
  181. external_layout_det_results = iter(external_layout_det_results)
  182. for _, batch_data in enumerate(self.batch_sampler(input)):
  183. image_arrays = self.img_reader(batch_data.instances)
  184. if model_settings["use_doc_preprocessor"]:
  185. doc_preprocessor_results = list(
  186. self.doc_preprocessor_pipeline(
  187. image_arrays,
  188. use_doc_orientation_classify=use_doc_orientation_classify,
  189. use_doc_unwarping=use_doc_unwarping,
  190. )
  191. )
  192. else:
  193. doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
  194. doc_preprocessor_images = [
  195. item["output_img"] for item in doc_preprocessor_results
  196. ]
  197. if (
  198. not model_settings["use_layout_detection"]
  199. and external_layout_det_results is None
  200. ):
  201. layout_det_results = [{} for _ in doc_preprocessor_images]
  202. flat_seal_results = list(
  203. self.seal_ocr_pipeline(
  204. doc_preprocessor_images,
  205. text_det_limit_side_len=seal_det_limit_side_len,
  206. text_det_limit_type=seal_det_limit_type,
  207. text_det_thresh=seal_det_thresh,
  208. text_det_box_thresh=seal_det_box_thresh,
  209. text_det_unclip_ratio=seal_det_unclip_ratio,
  210. text_rec_score_thresh=seal_rec_score_thresh,
  211. )
  212. )
  213. for seal_res in flat_seal_results:
  214. seal_res["seal_region_id"] = 1
  215. seal_results = [[item] for item in flat_seal_results]
  216. else:
  217. if model_settings["use_layout_detection"]:
  218. layout_det_results = list(
  219. self.layout_det_model(
  220. doc_preprocessor_images,
  221. threshold=layout_threshold,
  222. layout_nms=layout_nms,
  223. layout_unclip_ratio=layout_unclip_ratio,
  224. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  225. )
  226. )
  227. else:
  228. layout_det_results = []
  229. for _ in doc_preprocessor_images:
  230. try:
  231. layout_det_res = next(external_layout_det_results)
  232. except StopIteration:
  233. raise ValueError("No more layout det results")
  234. layout_det_results.append(layout_det_res)
  235. cropped_imgs = []
  236. chunk_indices = [0]
  237. for doc_preprocessor_image, layout_det_res in zip(
  238. doc_preprocessor_images, layout_det_results
  239. ):
  240. for box_info in layout_det_res["boxes"]:
  241. if box_info["label"].lower() in ["seal"]:
  242. crop_img_info = self._crop_by_boxes(
  243. doc_preprocessor_image, [box_info]
  244. )
  245. crop_img_info = crop_img_info[0]
  246. cropped_imgs.append(crop_img_info["img"])
  247. chunk_indices.append(len(cropped_imgs))
  248. flat_seal_results = list(
  249. self.seal_ocr_pipeline(
  250. cropped_imgs,
  251. text_det_limit_side_len=seal_det_limit_side_len,
  252. text_det_limit_type=seal_det_limit_type,
  253. text_det_thresh=seal_det_thresh,
  254. text_det_box_thresh=seal_det_box_thresh,
  255. text_det_unclip_ratio=seal_det_unclip_ratio,
  256. text_rec_score_thresh=seal_rec_score_thresh,
  257. )
  258. )
  259. seal_results = [
  260. flat_seal_results[i:j]
  261. for i, j in zip(chunk_indices[:-1], chunk_indices[1:])
  262. ]
  263. for seal_results_for_img in seal_results:
  264. seal_region_id = 1
  265. for seal_res in seal_results_for_img:
  266. seal_res["seal_region_id"] = seal_region_id
  267. seal_region_id += 1
  268. for (
  269. input_path,
  270. page_index,
  271. doc_preprocessor_res,
  272. layout_det_res,
  273. seal_results_for_img,
  274. ) in zip(
  275. batch_data.input_paths,
  276. batch_data.page_indexes,
  277. doc_preprocessor_results,
  278. layout_det_results,
  279. seal_results,
  280. ):
  281. single_img_res = {
  282. "input_path": input_path,
  283. "page_index": page_index,
  284. "doc_preprocessor_res": doc_preprocessor_res,
  285. "layout_det_res": layout_det_res,
  286. "seal_res_list": seal_results_for_img,
  287. "model_settings": model_settings,
  288. }
  289. yield SealRecognitionResult(single_img_res)
  290. @pipeline_requires_extra("ocr")
  291. class SealRecognitionPipeline(AutoParallelImageSimpleInferencePipeline):
  292. entities = ["seal_recognition"]
  293. @property
  294. def _pipeline_cls(self):
  295. return _SealRecognitionPipeline
  296. def _get_batch_size(self, config):
  297. return config.get("batch_size", 1)