| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import numpy as np
- from ..components import convert_points_to_boxes
- from ..layout_parsing.utils import get_sub_regions_ocr_res
- from ..ocr.result import OCRResult
- from .result import SingleTableRecognitionResult
- def get_ori_image_coordinate(x: int, y: int, box_list: list) -> list:
- """
- get the original coordinate from Cropped image to Original image.
- Args:
- x (int): x coordinate of cropped image
- y (int): y coordinate of cropped image
- box_list (list): list of table bounding boxes, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- Returns:
- list: list of original coordinates, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- """
- if not box_list:
- return box_list
- offset = np.array([x, y] * 4)
- box_list = np.array(box_list)
- if box_list.shape[-1] == 2:
- offset = offset.reshape(4, 2)
- ori_box_list = offset + box_list
- return ori_box_list
- def convert_table_structure_pred_bbox(
- cell_points_list: list, crop_start_point: list, img_shape: tuple
- ) -> None:
- """
- Convert the predicted table structure bounding boxes to the original image coordinate system.
- Args:
- cell_points_list (list): Bounding boxes ('bbox').
- crop_start_point (list): A list of two integers representing the starting point (x, y) of the cropped image region.
- img_shape (tuple): A tuple of two integers representing the shape (height, width) of the original image.
- Returns:
- cell_points_list (list): Bounding boxes ('bbox').
- """
- ori_cell_points_list = get_ori_image_coordinate(
- crop_start_point[0], crop_start_point[1], cell_points_list
- )
- ori_cell_points_list = np.reshape(ori_cell_points_list, (-1, 4, 2))
- cell_box_list = convert_points_to_boxes(ori_cell_points_list)
- img_height, img_width = img_shape
- cell_box_list = np.clip(
- cell_box_list, 0, [img_width, img_height, img_width, img_height]
- )
- return cell_box_list
- def distance(box_1: list, box_2: list) -> float:
- """
- compute the distance between two boxes
- Args:
- box_1 (list): first rectangle box,eg.(x1, y1, x2, y2)
- box_2 (list): second rectangle box,eg.(x1, y1, x2, y2)
- Returns:
- float: the distance between two boxes
- """
- x1, y1, x2, y2 = box_1
- x3, y3, x4, y4 = box_2
- center1_x = (x1 + x2) / 2
- center1_y = (y1 + y2) / 2
- center2_x = (x3 + x4) / 2
- center2_y = (y3 + y4) / 2
- dis = math.sqrt((center2_x - center1_x) ** 2 + (center2_y - center1_y) ** 2)
- dis_2 = abs(x3 - x1) + abs(y3 - y1)
- dis_3 = abs(x4 - x2) + abs(y4 - y2)
- return dis + min(dis_2, dis_3)
- def compute_iou(rec1: list, rec2: list) -> float:
- """
- computing IoU
- Args:
- rec1 (list): (x1, y1, x2, y2)
- rec2 (list): (x1, y1, x2, y2)
- Returns:
- float: Intersection over Union
- """
- # computing area of each rectangles
- S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
- S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
- # computing the sum_area
- sum_area = S_rec1 + S_rec2
- # find the each edge of intersect rectangle
- left_line = max(rec1[0], rec2[0])
- right_line = min(rec1[2], rec2[2])
- top_line = max(rec1[1], rec2[1])
- bottom_line = min(rec1[3], rec2[3])
- # judge if there is an intersect
- if left_line >= right_line or top_line >= bottom_line:
- return 0.0
- else:
- intersect = (right_line - left_line) * (bottom_line - top_line)
- return (intersect / (sum_area - intersect)) * 1.0
- def compute_inter(rec1, rec2):
- """
- computing intersection over rec2_area
- Args:
- rec1 (list): (x1, y1, x2, y2)
- rec2 (list): (x1, y1, x2, y2)
- Returns:
- float: Intersection over rec2_area
- """
- x1_1, y1_1, x2_1, y2_1 = map(float, rec1)
- x1_2, y1_2, x2_2, y2_2 = map(float, rec2)
- x_left = max(x1_1, x1_2)
- y_top = max(y1_1, y1_2)
- x_right = min(x2_1, x2_2)
- y_bottom = min(y2_1, y2_2)
- inter_width = max(0, x_right - x_left)
- inter_height = max(0, y_bottom - y_top)
- inter_area = inter_width * inter_height
- rec2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
- if rec2_area == 0:
- return 0
- iou = inter_area / rec2_area
- return iou
- def match_table_and_ocr(cell_box_list, ocr_dt_boxes, table_cells_flag, row_start_index):
- """
- match table and ocr
- Args:
- cell_box_list (list): bbox for table cell, 2 points, [left, top, right, bottom]
- ocr_dt_boxes (list): bbox for ocr, 2 points, [left, top, right, bottom]
- Returns:
- dict: matched dict, key is table index, value is ocr index
- """
- all_matched = []
- for k in range(len(table_cells_flag) - 1):
- matched = {}
- for i, table_box in enumerate(
- cell_box_list[table_cells_flag[k] : table_cells_flag[k + 1]]
- ):
- if len(table_box) == 8:
- table_box = [
- np.min(table_box[0::2]),
- np.min(table_box[1::2]),
- np.max(table_box[0::2]),
- np.max(table_box[1::2]),
- ]
- for j, ocr_box in enumerate(np.array(ocr_dt_boxes)):
- if compute_inter(table_box, ocr_box) > 0.7:
- if i not in matched.keys():
- matched[i] = [j]
- else:
- matched[i].append(j)
- real_len = max(matched.keys()) + 1 if len(matched) != 0 else 0
- if table_cells_flag[k + 1] < row_start_index[k + 1]:
- for s in range(row_start_index[k + 1] - table_cells_flag[k + 1]):
- matched[real_len + s] = []
- elif table_cells_flag[k + 1] > row_start_index[k + 1]:
- for s in range(table_cells_flag[k + 1] - row_start_index[k + 1]):
- matched[real_len - 1].append(matched[real_len + s])
- all_matched.append(matched)
- return all_matched
- def get_html_result(
- all_matched_index: dict, ocr_contents: dict, pred_structures: list, table_cells_flag
- ) -> str:
- """
- Generates HTML content based on the matched index, OCR contents, and predicted structures.
- Args:
- matched_index (dict): A dictionary containing matched indices.
- ocr_contents (dict): A dictionary of OCR contents.
- pred_structures (list): A list of predicted HTML structures.
- Returns:
- str: Generated HTML content as a string.
- """
- pred_html = []
- td_index = 0
- td_count = 0
- matched_list_index = 0
- head_structure = pred_structures[0:3]
- html = "".join(head_structure)
- table_structure = pred_structures[3:-3]
- for tag in table_structure:
- matched_index = all_matched_index[matched_list_index]
- if "</td>" in tag:
- if "<td></td>" == tag:
- pred_html.extend("<td>")
- if td_index in matched_index.keys():
- if len(matched_index[td_index]) == 0:
- continue
- b_with = False
- if (
- "<b>" in ocr_contents[matched_index[td_index][0]]
- and len(matched_index[td_index]) > 1
- ):
- b_with = True
- pred_html.extend("<b>")
- for i, td_index_index in enumerate(matched_index[td_index]):
- content = ocr_contents[td_index_index]
- if len(matched_index[td_index]) > 1:
- if len(content) == 0:
- continue
- if content[0] == " ":
- content = content[1:]
- if "<b>" in content:
- content = content[3:]
- if "</b>" in content:
- content = content[:-4]
- if len(content) == 0:
- continue
- if i != len(matched_index[td_index]) - 1 and " " != content[-1]:
- content += " "
- pred_html.extend(content)
- if b_with:
- pred_html.extend("</b>")
- if "<td></td>" == tag:
- pred_html.append("</td>")
- else:
- pred_html.append(tag)
- td_index += 1
- td_count += 1
- if (
- td_count >= table_cells_flag[matched_list_index + 1]
- and matched_list_index < len(all_matched_index) - 1
- ):
- matched_list_index += 1
- td_index = 0
- else:
- pred_html.append(tag)
- html += "".join(pred_html)
- end_structure = pred_structures[-3:]
- html += "".join(end_structure)
- return html
- def sort_table_cells_boxes(boxes):
- """
- Sort the input list of bounding boxes.
- Args:
- boxes (list of lists): The input list of bounding boxes, where each bounding box is formatted as [x1, y1, x2, y2].
- Returns:
- sorted_boxes (list of lists): The list of bounding boxes sorted.
- """
- boxes_sorted_by_y = sorted(boxes, key=lambda box: box[1])
- rows = []
- current_row = []
- current_y = None
- tolerance = 10
- for box in boxes_sorted_by_y:
- x1, y1, x2, y2 = box
- if current_y is None:
- current_row.append(box)
- current_y = y1
- else:
- if abs(y1 - current_y) <= tolerance:
- current_row.append(box)
- else:
- current_row.sort(key=lambda x: x[0])
- rows.append(current_row)
- current_row = [box]
- current_y = y1
- if current_row:
- current_row.sort(key=lambda x: x[0])
- rows.append(current_row)
- sorted_boxes = []
- flag = [0]
- for i in range(len(rows)):
- sorted_boxes.extend(rows[i])
- if i < len(rows):
- flag.append(flag[i] + len(rows[i]))
- return sorted_boxes, flag
- def convert_to_four_point_coordinates(boxes):
- """
- Convert bounding boxes from [x1, y1, x2, y2] format to
- [x1, y1, x2, y1, x2, y2, x1, y2] format.
- Parameters:
- - boxes: A list of bounding boxes, each defined as a list of integers
- in the format [x1, y1, x2, y2].
- Returns:
- - A list of bounding boxes, each converted to the format
- [x1, y1, x2, y1, x2, y2, x1, y2].
- """
- # Initialize an empty list to store the converted bounding boxes
- converted_boxes = []
- # Loop over each box in the input list
- for box in boxes:
- x1, y1, x2, y2 = box
- # Define the four corner points
- top_left = (x1, y1)
- top_right = (x2, y1)
- bottom_right = (x2, y2)
- bottom_left = (x1, y2)
- # Create a new list for the converted box
- converted_box = [
- top_left[0],
- top_left[1], # Top-left corner
- top_right[0],
- top_right[1], # Top-right corner
- bottom_right[0],
- bottom_right[1], # Bottom-right corner
- bottom_left[0],
- bottom_left[1], # Bottom-left corner
- ]
- # Append the converted box to the list
- converted_boxes.append(converted_box)
- return converted_boxes
- def find_row_start_index(html_list):
- """
- find the index of the first cell in each row
- Args:
- html_list (list): list for html results
- Returns:
- row_start_indices (list): list for the index of the first cell in each row
- """
- # Initialize an empty list to store the indices of row start positions
- row_start_indices = []
- # Variable to track the current index in the flattened HTML content
- current_index = 0
- # Flag to check if we are inside a table row
- inside_row = False
- # Iterate through the HTML tags
- for keyword in html_list:
- # If a new row starts, set the inside_row flag to True
- if keyword == "<tr>":
- inside_row = True
- # If we encounter a closing row tag, set the inside_row flag to False
- elif keyword == "</tr>":
- inside_row = False
- # If we encounter a cell and we are inside a row
- elif (keyword == "<td></td>" or keyword == "</td>") and inside_row:
- # Append the current index as the starting index of the row
- row_start_indices.append(current_index)
- # Set the flag to ensure we only record the first cell of the current row
- inside_row = False
- # Increment the current index if we encounter a cell regardless of being inside a row or not
- if keyword == "<td></td>" or keyword == "</td>":
- current_index += 1
- # Return the computed starting indices of each row
- return row_start_indices
- def map_and_get_max(table_cells_flag, row_start_index):
- """
- Retrieve table recognition result from cropped image info, table structure prediction, and overall OCR result.
- Args:
- table_cells_flag (list): List of the flags representing the end of each row of the table cells detection results.
- row_start_index (list): List of the flags representing the end of each row of the table structure predicted results.
- Returns:
- max_values: List of the process results.
- """
- max_values = []
- i = 0
- max_value = None
- for j in range(len(row_start_index)):
- while i < len(table_cells_flag) and table_cells_flag[i] <= row_start_index[j]:
- if max_value is None or table_cells_flag[i] > max_value:
- max_value = table_cells_flag[i]
- i += 1
- max_values.append(max_value if max_value is not None else row_start_index[j])
- return max_values
- def get_table_recognition_res(
- table_box: list,
- table_structure_result: list,
- table_cells_result: list,
- overall_ocr_res: OCRResult,
- table_ocr_pred: dict,
- cells_texts_list: list,
- use_table_cells_ocr_results: bool,
- use_table_cells_split_ocr: bool,
- ) -> SingleTableRecognitionResult:
- """
- Retrieve table recognition result from cropped image info, table structure prediction, and overall OCR result.
- Args:
- table_box (list): Information about the location of cropped image, including the bounding box.
- table_structure_result (list): Predicted table structure.
- table_cells_result (list): Predicted table cells.
- overall_ocr_res (OCRResult): Overall OCR result from the input image.
- table_ocr_pred (dict): Table OCR result from the input image.
- cells_texts_list (list): OCR results with cells.
- use_table_cells_ocr_results (bool): whether to use OCR results with cells.
- Returns:
- SingleTableRecognitionResult: An object containing the single table recognition result.
- """
- table_cells_result = convert_to_four_point_coordinates(table_cells_result)
- table_box = np.array([table_box])
- if not (use_table_cells_ocr_results == True and use_table_cells_split_ocr == True):
- table_ocr_pred = get_sub_regions_ocr_res(overall_ocr_res, table_box)
- crop_start_point = [table_box[0][0], table_box[0][1]]
- img_shape = overall_ocr_res["doc_preprocessor_res"]["output_img"].shape[0:2]
- if len(table_cells_result) == 0 or len(table_ocr_pred["rec_boxes"]) == 0:
- pred_html = " ".join(table_structure_result)
- if len(table_cells_result) != 0:
- table_cells_result = convert_table_structure_pred_bbox(
- table_cells_result, crop_start_point, img_shape
- )
- single_img_res = {
- "cell_box_list": table_cells_result,
- "table_ocr_pred": table_ocr_pred,
- "pred_html": pred_html,
- }
- return SingleTableRecognitionResult(single_img_res)
- table_cells_result = convert_table_structure_pred_bbox(
- table_cells_result, crop_start_point, img_shape
- )
- if use_table_cells_ocr_results == True and use_table_cells_split_ocr == False:
- ocr_dt_boxes = table_cells_result
- ocr_texts_res = cells_texts_list
- else:
- ocr_dt_boxes = table_ocr_pred["rec_boxes"]
- ocr_texts_res = table_ocr_pred["rec_texts"]
- table_cells_result, table_cells_flag = sort_table_cells_boxes(table_cells_result)
- row_start_index = find_row_start_index(table_structure_result)
- table_cells_flag = map_and_get_max(table_cells_flag, row_start_index)
- table_cells_flag.append(len(table_cells_result))
- row_start_index.append(len(table_cells_result))
- matched_index = match_table_and_ocr(
- table_cells_result, ocr_dt_boxes, table_cells_flag, table_cells_flag
- )
- pred_html = get_html_result(
- matched_index, ocr_texts_res, table_structure_result, row_start_index
- )
- single_img_res = {
- "cell_box_list": table_cells_result,
- "table_ocr_pred": table_ocr_pred,
- "pred_html": pred_html,
- }
- return SingleTableRecognitionResult(single_img_res)
|