pipeline.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.video_detection.result import DetVideoResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from ..base import BasePipeline
  22. @benchmark.time_methods
  23. @pipeline_requires_extra("video")
  24. class VideoDetectionPipeline(BasePipeline):
  25. """Video detection Pipeline"""
  26. entities = "video_detection"
  27. def __init__(
  28. self,
  29. config: Dict,
  30. device: str = None,
  31. pp_option: PaddlePredictorOption = None,
  32. use_hpip: bool = False,
  33. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  34. ) -> None:
  35. """
  36. Initializes the class with given configurations and options.
  37. Args:
  38. config (Dict): Configuration dictionary containing model and other parameters.
  39. device (str): The device to run the prediction on. Default is None.
  40. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  41. use_hpip (bool, optional): Whether to use the high-performance
  42. inference plugin (HPIP) by default. Defaults to False.
  43. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  44. The default high-performance inference configuration dictionary.
  45. Defaults to None.
  46. """
  47. super().__init__(
  48. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  49. )
  50. video_detection_model_config = config["SubModules"]["VideoDetection"]
  51. model_kwargs = {}
  52. if "nms_thresh" in video_detection_model_config:
  53. model_kwargs["nms_thresh"] = video_detection_model_config["nms_thresh"]
  54. if "score_thresh" in video_detection_model_config:
  55. model_kwargs["score_thresh"] = video_detection_model_config["score_thresh"]
  56. self.video_detection_model = self.create_model(
  57. video_detection_model_config, **model_kwargs
  58. )
  59. def predict(
  60. self,
  61. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  62. nms_thresh: float = 0.5,
  63. score_thresh: float = 0.4,
  64. **kwargs
  65. ) -> DetVideoResult:
  66. """Predicts video detection results for the given input.
  67. Args:
  68. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  69. **kwargs: Additional keyword arguments that can be passed to the function.
  70. Returns:
  71. DetVideoResult: The predicted video detection results.
  72. """
  73. yield from self.video_detection_model(
  74. input, nms_thresh=nms_thresh, score_thresh=score_thresh
  75. )