| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import shutil
- from pathlib import Path
- from ..base import BaseTrainer
- from .model_list import MODELS
- class MLClsTrainer(BaseTrainer):
- """Image Classification Model Trainer"""
- entities = MODELS
- def dump_label_dict(self, src_label_dict_path: str):
- """dump label dict config
- Args:
- src_label_dict_path (str): path to label dict file to be saved.
- """
- dst_label_dict_path = Path(self.global_config.output).joinpath("label_dict.txt")
- shutil.copyfile(src_label_dict_path, dst_label_dict_path)
- def update_config(self):
- """update training config"""
- if self.train_config.log_interval:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.train_config.eval_interval:
- self.pdx_config.update_eval_interval(self.train_config.eval_interval)
- if self.train_config.save_interval:
- self.pdx_config.update_save_interval(self.train_config.save_interval)
- self.pdx_config.update_dataset(self.global_config.dataset_dir, "MLClsDataset")
- if self.train_config.num_classes is not None:
- self.pdx_config.update_num_classes(self.train_config.num_classes)
- if (
- self.train_config.pretrain_weight_path
- and self.train_config.pretrain_weight_path != ""
- ):
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path
- )
- label_dict_path = Path(self.global_config.dataset_dir).joinpath("label.txt")
- if label_dict_path.exists():
- self.dump_label_dict(label_dict_path)
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config._update_epochs(self.train_config.epochs_iters)
- if self.train_config.warmup_steps is not None:
- self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps)
- if self.global_config.output is not None:
- self.pdx_config._update_output_dir(self.global_config.output)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- if (
- self.train_config.resume_path is not None
- and self.train_config.resume_path != ""
- ):
- train_args["resume_path"] = self.train_config.resume_path
- train_args["dy2st"] = self.train_config.get("dy2st", False)
- # amp support 'O1', 'O2', 'OFF'
- train_args["amp"] = self.train_config.get("amp", "OFF")
- return train_args
|