| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /*
- 3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
- Written by Shaoshuai Shi
- All Rights Reserved 2019-2020.
- */
- #include <stdio.h>
- #define THREADS_PER_BLOCK 16
- #define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
- // #define DEBUG
- const int THREADS_PER_BLOCK_NMS = sizeof(int64_t) * 8;
- const float EPS = 1e-8;
- struct Point {
- float x, y;
- __device__ Point() {}
- __device__ Point(double _x, double _y) { x = _x, y = _y; }
- __device__ void set(float _x, float _y) {
- x = _x;
- y = _y;
- }
- __device__ Point operator+(const Point &b) const {
- return Point(x + b.x, y + b.y);
- }
- __device__ Point operator-(const Point &b) const {
- return Point(x - b.x, y - b.y);
- }
- };
- __device__ inline float cross(const Point &a, const Point &b) {
- return a.x * b.y - a.y * b.x;
- }
- __device__ inline float cross(const Point &p1, const Point &p2,
- const Point &p0) {
- return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
- }
- __device__ int check_rect_cross(const Point &p1, const Point &p2,
- const Point &q1, const Point &q2) {
- int ret = min(p1.x, p2.x) <= max(q1.x, q2.x) &&
- min(q1.x, q2.x) <= max(p1.x, p2.x) &&
- min(p1.y, p2.y) <= max(q1.y, q2.y) &&
- min(q1.y, q2.y) <= max(p1.y, p2.y);
- return ret;
- }
- __device__ inline int check_in_box2d(const float *box, const Point &p) {
- // params: (7) [x, y, z, dx, dy, dz, heading]
- const float MARGIN = 1e-2;
- float center_x = box[0], center_y = box[1];
- float angle_cos = cos(-box[6]),
- angle_sin =
- sin(-box[6]); // rotate the point in the opposite direction of box
- float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin);
- float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
- return (fabs(rot_x) < box[3] / 2 + MARGIN &&
- fabs(rot_y) < box[4] / 2 + MARGIN);
- }
- __device__ inline int intersection(const Point &p1, const Point &p0,
- const Point &q1, const Point &q0,
- Point &ans) {
- // fast exclusion
- if (check_rect_cross(p0, p1, q0, q1) == 0)
- return 0;
- // check cross standing
- float s1 = cross(q0, p1, p0);
- float s2 = cross(p1, q1, p0);
- float s3 = cross(p0, q1, q0);
- float s4 = cross(q1, p1, q0);
- if (!(s1 * s2 > 0 && s3 * s4 > 0))
- return 0;
- // calculate intersection of two lines
- float s5 = cross(q1, p1, p0);
- if (fabs(s5 - s1) > EPS) {
- ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
- ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
- } else {
- float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
- float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
- float D = a0 * b1 - a1 * b0;
- ans.x = (b0 * c1 - b1 * c0) / D;
- ans.y = (a1 * c0 - a0 * c1) / D;
- }
- return 1;
- }
- __device__ inline void rotate_around_center(const Point ¢er,
- const float angle_cos,
- const float angle_sin, Point &p) {
- float new_x =
- (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x;
- float new_y =
- (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
- p.set(new_x, new_y);
- }
- __device__ inline int point_cmp(const Point &a, const Point &b,
- const Point ¢er) {
- return atan2(a.y - center.y, a.x - center.x) >
- atan2(b.y - center.y, b.x - center.x);
- }
- __device__ inline float box_overlap(const float *box_a, const float *box_b) {
- // params box_a: [x, y, z, dx, dy, dz, heading]
- // params box_b: [x, y, z, dx, dy, dz, heading]
- float a_angle = box_a[6], b_angle = box_b[6];
- float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2,
- a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2;
- float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half;
- float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half;
- float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half;
- float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
- Point center_a(box_a[0], box_a[1]);
- Point center_b(box_b[0], box_b[1]);
- #ifdef DEBUG
- printf(
- "a: (%.3f, %.3f, %.3f, %.3f, %.3f), b: (%.3f, %.3f, %.3f, %.3f, %.3f)\n",
- a_x1, a_y1, a_x2, a_y2, a_angle, b_x1, b_y1, b_x2, b_y2, b_angle);
- printf("center a: (%.3f, %.3f), b: (%.3f, %.3f)\n", center_a.x, center_a.y,
- center_b.x, center_b.y);
- #endif
- Point box_a_corners[5];
- box_a_corners[0].set(a_x1, a_y1);
- box_a_corners[1].set(a_x2, a_y1);
- box_a_corners[2].set(a_x2, a_y2);
- box_a_corners[3].set(a_x1, a_y2);
- Point box_b_corners[5];
- box_b_corners[0].set(b_x1, b_y1);
- box_b_corners[1].set(b_x2, b_y1);
- box_b_corners[2].set(b_x2, b_y2);
- box_b_corners[3].set(b_x1, b_y2);
- // get oriented corners
- float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
- float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
- for (int k = 0; k < 4; k++) {
- #ifdef DEBUG
- printf("before corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k,
- box_a_corners[k].x, box_a_corners[k].y, box_b_corners[k].x,
- box_b_corners[k].y);
- #endif
- rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
- rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
- #ifdef DEBUG
- printf("corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k, box_a_corners[k].x,
- box_a_corners[k].y, box_b_corners[k].x, box_b_corners[k].y);
- #endif
- }
- box_a_corners[4] = box_a_corners[0];
- box_b_corners[4] = box_b_corners[0];
- // get intersection of lines
- Point cross_points[16];
- Point poly_center;
- int cnt = 0, flag = 0;
- poly_center.set(0, 0);
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- flag = intersection(box_a_corners[i + 1], box_a_corners[i],
- box_b_corners[j + 1], box_b_corners[j],
- cross_points[cnt]);
- if (flag) {
- poly_center = poly_center + cross_points[cnt];
- cnt++;
- #ifdef DEBUG
- printf(
- "Cross points (%.3f, %.3f): a(%.3f, %.3f)->(%.3f, %.3f), b(%.3f, "
- "%.3f)->(%.3f, %.3f) \n",
- cross_points[cnt - 1].x, cross_points[cnt - 1].y,
- box_a_corners[i].x, box_a_corners[i].y, box_a_corners[i + 1].x,
- box_a_corners[i + 1].y, box_b_corners[i].x, box_b_corners[i].y,
- box_b_corners[i + 1].x, box_b_corners[i + 1].y);
- #endif
- }
- }
- }
- // check corners
- for (int k = 0; k < 4; k++) {
- if (check_in_box2d(box_a, box_b_corners[k])) {
- poly_center = poly_center + box_b_corners[k];
- cross_points[cnt] = box_b_corners[k];
- cnt++;
- #ifdef DEBUG
- printf("b corners in a: corner_b(%.3f, %.3f)", cross_points[cnt - 1].x,
- cross_points[cnt - 1].y);
- #endif
- }
- if (check_in_box2d(box_b, box_a_corners[k])) {
- poly_center = poly_center + box_a_corners[k];
- cross_points[cnt] = box_a_corners[k];
- cnt++;
- #ifdef DEBUG
- printf("a corners in b: corner_a(%.3f, %.3f)", cross_points[cnt - 1].x,
- cross_points[cnt - 1].y);
- #endif
- }
- }
- poly_center.x /= cnt;
- poly_center.y /= cnt;
- // sort the points of polygon
- Point temp;
- for (int j = 0; j < cnt - 1; j++) {
- for (int i = 0; i < cnt - j - 1; i++) {
- if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)) {
- temp = cross_points[i];
- cross_points[i] = cross_points[i + 1];
- cross_points[i + 1] = temp;
- }
- }
- }
- #ifdef DEBUG
- printf("cnt=%d\n", cnt);
- for (int i = 0; i < cnt; i++) {
- printf("All cross point %d: (%.3f, %.3f)\n", i, cross_points[i].x,
- cross_points[i].y);
- }
- #endif
- // get the overlap areas
- float area = 0;
- for (int k = 0; k < cnt - 1; k++) {
- area += cross(cross_points[k] - cross_points[0],
- cross_points[k + 1] - cross_points[0]);
- }
- return fabs(area) / 2.0;
- }
- __device__ inline float iou_bev(const float *box_a, const float *box_b) {
- // params box_a: [x, y, z, dx, dy, dz, heading]
- // params box_b: [x, y, z, dx, dy, dz, heading]
- float sa = box_a[3] * box_a[4];
- float sb = box_b[3] * box_b[4];
- float s_overlap = box_overlap(box_a, box_b);
- return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
- }
- __global__ void boxes_overlap_kernel(const int num_a, const float *boxes_a,
- const int num_b, const float *boxes_b,
- float *ans_overlap) {
- // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
- // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
- const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
- const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
- if (a_idx >= num_a || b_idx >= num_b) {
- return;
- }
- const float *cur_box_a = boxes_a + a_idx * 7;
- const float *cur_box_b = boxes_b + b_idx * 7;
- float s_overlap = box_overlap(cur_box_a, cur_box_b);
- ans_overlap[a_idx * num_b + b_idx] = s_overlap;
- }
- __global__ void boxes_iou_bev_kernel(const int num_a, const float *boxes_a,
- const int num_b, const float *boxes_b,
- float *ans_iou) {
- // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
- // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
- const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
- const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
- if (a_idx >= num_a || b_idx >= num_b) {
- return;
- }
- const float *cur_box_a = boxes_a + a_idx * 7;
- const float *cur_box_b = boxes_b + b_idx * 7;
- float cur_iou_bev = iou_bev(cur_box_a, cur_box_b);
- ans_iou[a_idx * num_b + b_idx] = cur_iou_bev;
- }
- __global__ void nms_kernel(const int boxes_num, const float nms_overlap_thresh,
- const float *boxes, int64_t *mask) {
- // params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
- // params: mask (N, N/THREADS_PER_BLOCK_NMS)
- const int row_start = blockIdx.y;
- const int col_start = blockIdx.x;
- // if (row_start > col_start) return;
- const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS,
- THREADS_PER_BLOCK_NMS);
- const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS,
- THREADS_PER_BLOCK_NMS);
- __shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
- if (threadIdx.x < col_size) {
- block_boxes[threadIdx.x * 7 + 0] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
- block_boxes[threadIdx.x * 7 + 1] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
- block_boxes[threadIdx.x * 7 + 2] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
- block_boxes[threadIdx.x * 7 + 3] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
- block_boxes[threadIdx.x * 7 + 4] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
- block_boxes[threadIdx.x * 7 + 5] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
- block_boxes[threadIdx.x * 7 + 6] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
- }
- __syncthreads();
- if (threadIdx.x < row_size) {
- const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
- const float *cur_box = boxes + cur_box_idx * 7;
- int i = 0;
- int64_t t = 0;
- int start = 0;
- if (row_start == col_start) {
- start = threadIdx.x + 1;
- }
- for (i = start; i < col_size; i++) {
- if (iou_bev(cur_box, block_boxes + i * 7) > nms_overlap_thresh) {
- t |= 1ULL << i;
- }
- }
- const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
- mask[cur_box_idx * col_blocks + col_start] = t;
- }
- }
- __device__ inline float iou_normal(float const *const a, float const *const b) {
- // params: a: [x, y, z, dx, dy, dz, heading]
- // params: b: [x, y, z, dx, dy, dz, heading]
- float left = fmaxf(a[0] - a[3] / 2, b[0] - b[3] / 2),
- right = fminf(a[0] + a[3] / 2, b[0] + b[3] / 2);
- float top = fmaxf(a[1] - a[4] / 2, b[1] - b[4] / 2),
- bottom = fminf(a[1] + a[4] / 2, b[1] + b[4] / 2);
- float width = fmaxf(right - left, 0.f), height = fmaxf(bottom - top, 0.f);
- float interS = width * height;
- float Sa = a[3] * a[4];
- float Sb = b[3] * b[4];
- return interS / fmaxf(Sa + Sb - interS, EPS);
- }
- __global__ void nms_normal_kernel(const int boxes_num,
- const float nms_overlap_thresh,
- const float *boxes, int64_t *mask) {
- // params: boxes (N, 7) [x, y, z, dx, dy, dz, heading]
- // params: mask (N, N/THREADS_PER_BLOCK_NMS)
- const int row_start = blockIdx.y;
- const int col_start = blockIdx.x;
- // if (row_start > col_start) return;
- const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS,
- THREADS_PER_BLOCK_NMS);
- const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS,
- THREADS_PER_BLOCK_NMS);
- __shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
- if (threadIdx.x < col_size) {
- block_boxes[threadIdx.x * 7 + 0] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0];
- block_boxes[threadIdx.x * 7 + 1] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1];
- block_boxes[threadIdx.x * 7 + 2] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2];
- block_boxes[threadIdx.x * 7 + 3] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3];
- block_boxes[threadIdx.x * 7 + 4] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4];
- block_boxes[threadIdx.x * 7 + 5] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5];
- block_boxes[threadIdx.x * 7 + 6] =
- boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6];
- }
- __syncthreads();
- if (threadIdx.x < row_size) {
- const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
- const float *cur_box = boxes + cur_box_idx * 7;
- int i = 0;
- int64_t t = 0;
- int start = 0;
- if (row_start == col_start) {
- start = threadIdx.x + 1;
- }
- for (i = start; i < col_size; i++) {
- if (iou_normal(cur_box, block_boxes + i * 7) > nms_overlap_thresh) {
- t |= 1ULL << i;
- }
- }
- const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
- mask[cur_box_idx * col_blocks + col_start] = t;
- }
- }
- void BoxesOverlapLauncher(const cudaStream_t &stream, const int num_a,
- const float *boxes_a, const int num_b,
- const float *boxes_b, float *ans_overlap) {
- dim3 blocks(
- DIVUP(num_b, THREADS_PER_BLOCK),
- DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
- dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
- boxes_overlap_kernel<<<blocks, threads, 0, stream>>>(num_a, boxes_a, num_b,
- boxes_b, ans_overlap);
- #ifdef DEBUG
- cudaDeviceSynchronize(); // for using printf in kernel function
- #endif
- }
- void BoxesIouBevLauncher(const cudaStream_t &stream, const int num_a,
- const float *boxes_a, const int num_b,
- const float *boxes_b, float *ans_iou) {
- dim3 blocks(
- DIVUP(num_b, THREADS_PER_BLOCK),
- DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
- dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
- boxes_iou_bev_kernel<<<blocks, threads, 0, stream>>>(num_a, boxes_a, num_b,
- boxes_b, ans_iou);
- #ifdef DEBUG
- cudaDeviceSynchronize(); // for using printf in kernel function
- #endif
- }
- void NmsLauncher(const cudaStream_t &stream, const float *boxes, int64_t *mask,
- int boxes_num, float nms_overlap_thresh) {
- dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
- DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
- dim3 threads(THREADS_PER_BLOCK_NMS);
- nms_kernel<<<blocks, threads, 0, stream>>>(boxes_num, nms_overlap_thresh,
- boxes, mask);
- }
- void NmsNormalLauncher(const cudaStream_t &stream, const float *boxes,
- int64_t *mask, int boxes_num, float nms_overlap_thresh) {
- dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
- DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
- dim3 threads(THREADS_PER_BLOCK_NMS);
- nms_normal_kernel<<<blocks, threads, 0, stream>>>(
- boxes_num, nms_overlap_thresh, boxes, mask);
- }
|