| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Union
- import yaml
- from ....utils.misc import abspath
- from ...base import BaseConfig
- class ClsConfig(BaseConfig):
- """Image Classification Task Config"""
- def update(self, list_like_obj: list):
- """update self
- Args:
- list_like_obj (list): list of pairs(key0.key1.idx.key2=value), such as:
- [
- 'topk=2',
- 'VALID.transforms.1.ResizeImage.resize_short=300'
- ]
- """
- from paddleclas.ppcls.utils.config import override_config
- dict_ = override_config(self.dict, list_like_obj)
- self.reset_from_dict(dict_)
- def load(self, config_file_path: str):
- """load config from yaml file
- Args:
- config_file_path (str): the path of yaml file.
- Raises:
- TypeError: the content of yaml file `config_file_path` error.
- """
- dict_ = yaml.load(open(config_file_path, "rb"), Loader=yaml.Loader)
- if not isinstance(dict_, dict):
- raise TypeError
- self.reset_from_dict(dict_)
- def dump(self, config_file_path: str):
- """dump self to yaml file
- Args:
- config_file_path (str): the path to save self as yaml file.
- """
- with open(config_file_path, "w", encoding="utf-8") as f:
- yaml.dump(self.dict, f, default_flow_style=False, sort_keys=False)
- def update_dataset(
- self,
- dataset_path: str,
- dataset_type: str = None,
- *,
- train_list_path: str = None,
- ):
- """update dataset settings
- Args:
- dataset_path (str): the root path of dataset.
- dataset_type (str, optional): dataset type. Defaults to None.
- train_list_path (str, optional): the path of train dataset annotation file . Defaults to None.
- Raises:
- ValueError: the dataset_type error.
- """
- dataset_path = abspath(dataset_path)
- if dataset_type is None:
- dataset_type = "ClsDataset"
- if train_list_path:
- train_list_path = f"{train_list_path}"
- else:
- train_list_path = f"{dataset_path}/train.txt"
- if dataset_type in ["ClsDataset", "MLClsDataset"]:
- ds_cfg = [
- f"DataLoader.Train.dataset.name={dataset_type}",
- f"DataLoader.Train.dataset.image_root={dataset_path}",
- f"DataLoader.Train.dataset.cls_label_path={train_list_path}",
- f"DataLoader.Eval.dataset.name={dataset_type}",
- f"DataLoader.Eval.dataset.image_root={dataset_path}",
- f"DataLoader.Eval.dataset.cls_label_path={dataset_path}/val.txt",
- f"Infer.PostProcess.class_id_map_file={dataset_path}/label.txt",
- ]
- else:
- raise ValueError(f"{repr(dataset_type)} is not supported.")
- self.update(ds_cfg)
- def update_batch_size(self, batch_size: int, mode: str = "train"):
- """update batch size setting
- Args:
- batch_size (int): the batch size number to set.
- mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: `mode` error.
- """
- if mode == "train":
- if self.DataLoader["Train"]["sampler"].get("batch_size", False):
- _cfg = [f"DataLoader.Train.sampler.batch_size={batch_size}"]
- else:
- _cfg = [f"DataLoader.Train.sampler.first_bs={batch_size}"]
- _cfg = [f"DataLoader.Train.dataset.name=MultiScaleDataset"]
- elif mode == "eval":
- _cfg = [f"DataLoader.Eval.sampler.batch_size={batch_size}"]
- elif mode == "test":
- _cfg = [f"DataLoader.Infer.batch_size={batch_size}"]
- else:
- raise ValueError("The input `mode` should be train, eval or test.")
- self.update(_cfg)
- def update_learning_rate(self, learning_rate: float):
- """update learning rate
- Args:
- learning_rate (float): the learning rate value to set.
- """
- if self._dict["Optimizer"]["lr"].get("learning_rate", None) is not None:
- _cfg = [f"Optimizer.lr.learning_rate={learning_rate}"]
- elif self._dict["Optimizer"]["lr"].get("max_learning_rate", None) is not None:
- _cfg = [f"Optimizer.lr.max_learning_rate={learning_rate}"]
- else:
- raise ValueError("unsupported lr format")
- self.update(_cfg)
- def update_warmup_epochs(self, warmup_epochs: int):
- """update warmup epochs
- Args:
- warmup_epochs (int): the warmup epochs value to set.
- """
- _cfg = [f"Optimizer.lr.warmup_epoch={warmup_epochs}"]
- self.update(_cfg)
- def update_pretrained_weights(self, pretrained_model: str):
- """update pretrained weight path
- Args:
- pretrained_model (str): the local path or url of pretrained weight file to set.
- """
- assert isinstance(
- pretrained_model, (str, type(None))
- ), "The 'pretrained_model' should be a string, indicating the path to the '*.pdparams' file, or 'None', \
- indicating that no pretrained model to be used."
- if pretrained_model is None:
- self.update(["Global.pretrained_model=None"])
- self.update(["Arch.pretrained=False"])
- else:
- if pretrained_model.lower() == "default":
- self.update(["Global.pretrained_model=None"])
- self.update(["Arch.pretrained=True"])
- else:
- if not pretrained_model.startswith(("http://", "https://")):
- pretrained_model = abspath(
- pretrained_model.replace(".pdparams", "")
- )
- self.update([f"Global.pretrained_model={pretrained_model}"])
- def update_num_classes(self, num_classes: int):
- """update classes number
- Args:
- num_classes (int): the classes number value to set.
- """
- update_str_list = [f"Arch.class_num={num_classes}"]
- if self._get_arch_name() == "DistillationModel":
- update_str_list.append(f"Arch.models.0.Teacher.class_num={num_classes}")
- update_str_list.append(f"Arch.models.1.Student.class_num={num_classes}")
- ml_decoder = self.dict.get("MLDecoder", None)
- if ml_decoder is not None:
- self.update_ml_query_num(num_classes)
- self.update_ml_class_num(num_classes)
- self.update(update_str_list)
- def update_ml_query_num(self, query_num: int):
- """update MLDecoder query number
- Args:
- query_num (int): the query number value to set,qury_num should be less than or equal to num_classes.
- """
- base_query_num = self.dict.get("MLDecoder", {}).get("query_num", None)
- if base_query_num is not None:
- _cfg = [f"MLDecoder.query_num={query_num}"]
- self.update(_cfg)
- def update_ml_class_num(self, class_num: int):
- """update MLDecoder query number
- Args:
- num_classes (int): the classes number value to set.
- """
- base_class_num = self.dict.get("MLDecoder", {}).get("class_num", None)
- if base_class_num is not None:
- _cfg = [f"MLDecoder.class_num={class_num}"]
- self.update(_cfg)
- def _update_slim_config(self, slim_config_path: str):
- """update slim settings
- Args:
- slim_config_path (str): the path to slim config yaml file.
- """
- slim_config = yaml.load(open(slim_config_path, "rb"), Loader=yaml.Loader)[
- "Slim"
- ]
- self.update([f"Slim={slim_config}"])
- def _update_amp(self, amp: Union[None, str]):
- """update AMP settings
- Args:
- amp (None | str): the AMP settings.
- Raises:
- ValueError: AMP setting `amp` error, missing field `AMP`.
- """
- if amp is None or amp == "OFF":
- if "AMP" in self.dict:
- self._dict.pop("AMP")
- else:
- if "AMP" not in self.dict:
- raise ValueError("Config must have AMP information.")
- _cfg = ["AMP.use_amp=True", f"AMP.level={amp}"]
- self.update(_cfg)
- def update_num_workers(self, num_workers: int):
- """update workers number of train and eval dataloader
- Args:
- num_workers (int): the value of train and eval dataloader workers number to set.
- """
- _cfg = [
- f"DataLoader.Train.loader.num_workers={num_workers}",
- f"DataLoader.Eval.loader.num_workers={num_workers}",
- ]
- self.update(_cfg)
- def update_shared_memory(self, shared_memeory: bool):
- """update shared memory setting of train and eval dataloader
- Args:
- shared_memeory (bool): whether or not to use shared memory
- """
- assert isinstance(shared_memeory, bool), "shared_memeory should be a bool"
- _cfg = [
- f"DataLoader.Train.loader.use_shared_memory={shared_memeory}",
- f"DataLoader.Eval.loader.use_shared_memory={shared_memeory}",
- ]
- self.update(_cfg)
- def update_shuffle(self, shuffle: bool):
- """update shuffle setting of train and eval dataloader
- Args:
- shuffle (bool): whether or not to shuffle the data
- """
- assert isinstance(shuffle, bool), "shuffle should be a bool"
- _cfg = [
- f"DataLoader.Train.loader.shuffle={shuffle}",
- f"DataLoader.Eval.loader.shuffle={shuffle}",
- ]
- self.update(_cfg)
- def update_dali(self, dali: bool):
- """enable DALI setting of train and eval dataloader
- Args:
- dali (bool): whether or not to use DALI
- """
- assert isinstance(dali, bool), "dali should be a bool"
- _cfg = [
- f"Global.use_dali={dali}",
- f"Global.use_dali={dali}",
- ]
- self.update(_cfg)
- def update_seed(self, seed: int):
- """update seed
- Args:
- seed (int): the random seed value to set
- """
- _cfg = [f"Global.seed={seed}"]
- self.update(_cfg)
- def update_device(self, device: str):
- """update device setting
- Args:
- device (str): the running device to set
- """
- device = device.split(":")[0]
- _cfg = [f"Global.device={device}"]
- self.update(_cfg)
- def update_label_dict_path(self, dict_path: str):
- """update label dict file path
- Args:
- dict_path (str): the path of label dict file to set
- """
- _cfg = [
- f"PostProcess.Topk.class_id_map_file={abspath(dict_path)}",
- ]
- self.update(_cfg)
- def _update_to_static(self, dy2st: bool):
- """update config to set dynamic to static mode
- Args:
- dy2st (bool): whether or not to use the dynamic to static mode.
- """
- self.update([f"Global.to_static={dy2st}"])
- def _update_use_vdl(self, use_vdl: bool):
- """update config to set VisualDL
- Args:
- use_vdl (bool): whether or not to use VisualDL.
- """
- self.update([f"Global.use_visualdl={use_vdl}"])
- def _update_epochs(self, epochs: int):
- """update epochs setting
- Args:
- epochs (int): the epochs number value to set
- """
- self.update([f"Global.epochs={epochs}"])
- def _update_checkpoints(self, resume_path: Union[None, str]):
- """update checkpoint setting
- Args:
- resume_path (None | str): the resume training setting. if is `None`, train from scratch, otherwise,
- train from checkpoint file that path is `.pdparams` file.
- """
- if resume_path is not None:
- resume_path = resume_path.replace(".pdparams", "")
- self.update([f"Global.checkpoints={resume_path}"])
- def _update_output_dir(self, save_dir: str):
- """update output directory
- Args:
- save_dir (str): the path to save outputs.
- """
- self.update([f"Global.output_dir={abspath(save_dir)}"])
- def update_log_interval(self, log_interval: int):
- """update log interval(steps)
- Args:
- log_interval (int): the log interval value to set.
- """
- self.update([f"Global.print_batch_step={log_interval}"])
- def update_eval_interval(self, eval_interval: int):
- """update eval interval(epochs)
- Args:
- eval_interval (int): the eval interval value to set.
- """
- self.update([f"Global.eval_interval={eval_interval}"])
- def update_save_interval(self, save_interval: int):
- """update eval interval(epochs)
- Args:
- save_interval (int): the save interval value to set.
- """
- self.update([f"Global.save_interval={save_interval}"])
- def update_log_ranks(self, device):
- """update log ranks
- Args:
- device (str): the running device to set
- """
- log_ranks = device.split(":")[1]
- self.update([f'Global.log_ranks="{log_ranks}"'])
- def update_print_mem_info(self, print_mem_info: bool):
- """setting print memory info"""
- assert isinstance(print_mem_info, bool), "print_mem_info should be a bool"
- self.update([f"Global.print_mem_info={print_mem_info}"])
- def _update_predict_img(self, infer_img: str, infer_list: str = None):
- """update image to be predicted
- Args:
- infer_img (str): the path to image that to be predicted.
- infer_list (str, optional): the path to file that images. Defaults to None.
- """
- if infer_list:
- self.update([f"Infer.infer_list={infer_list}"])
- self.update([f"Infer.infer_imgs={infer_img}"])
- def _update_save_inference_dir(self, save_inference_dir: str):
- """update directory path to save inference model files
- Args:
- save_inference_dir (str): the directory path to set.
- """
- self.update([f"Global.save_inference_dir={abspath(save_inference_dir)}"])
- def _update_inference_model_dir(self, model_dir: str):
- """update inference model directory
- Args:
- model_dir (str): the directory path of inference model fils that used to predict.
- """
- self.update([f"Global.inference_model_dir={abspath(model_dir)}"])
- def _update_infer_img(self, infer_img: str):
- """update path of image that would be predict
- Args:
- infer_img (str): the image path.
- """
- self.update([f"Global.infer_imgs={infer_img}"])
- def _update_infer_device(self, device: str):
- """update the device used in predicting
- Args:
- device (str): the running device setting
- """
- self.update([f'Global.use_gpu={device.split(":")[0]=="gpu"}'])
- def _update_enable_mkldnn(self, enable_mkldnn: bool):
- """update whether to enable MKLDNN
- Args:
- enable_mkldnn (bool): `True` is enable, otherwise is disable.
- """
- self.update([f"Global.enable_mkldnn={enable_mkldnn}"])
- def _update_infer_img_shape(self, img_shape: str):
- """update image cropping shape in the preprocessing
- Args:
- img_shape (str): the shape of cropping in the preprocessing,
- i.e. `PreProcess.transform_ops.1.CropImage.size`.
- """
- self.update([f"PreProcess.transform_ops.1.CropImage.size={img_shape}"])
- def _update_save_predict_result(self, save_dir: str):
- """update directory that save predicting output
- Args:
- save_dir (str): the directory path that save predicting output.
- """
- self.update([f"Infer.save_dir={save_dir}"])
- def update_model(self, **kwargs):
- """update model settings"""
- for k in kwargs:
- v = kwargs[k]
- self.update([f"Arch.{k}={v}"])
- def update_teacher_model(self, **kwargs):
- """update teacher model settings"""
- for k in kwargs:
- v = kwargs[k]
- self.update([f"Arch.models.0.Teacher.{k}={v}"])
- def update_student_model(self, **kwargs):
- """update student model settings"""
- for k in kwargs:
- v = kwargs[k]
- self.update([f"Arch.models.1.Student.{k}={v}"])
- def get_epochs_iters(self) -> int:
- """get epochs
- Returns:
- int: the epochs value, i.e., `Global.epochs` in config.
- """
- return self.dict["Global"]["epochs"]
- def get_log_interval(self) -> int:
- """get log interval(steps)
- Returns:
- int: the log interval value, i.e., `Global.print_batch_step` in config.
- """
- return self.dict["Global"]["print_batch_step"]
- def get_eval_interval(self) -> int:
- """get eval interval(epochs)
- Returns:
- int: the eval interval value, i.e., `Global.eval_interval` in config.
- """
- return self.dict["Global"]["eval_interval"]
- def get_save_interval(self) -> int:
- """get save interval(epochs)
- Returns:
- int: the save interval value, i.e., `Global.save_interval` in config.
- """
- return self.dict["Global"]["save_interval"]
- def get_learning_rate(self) -> float:
- """get learning rate
- Returns:
- float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config.
- """
- return self.dict["Optimizer"]["lr"]["learning_rate"]
- def get_warmup_epochs(self) -> int:
- """get warmup epochs
- Returns:
- int: the warmup epochs value, i.e., `Optimizer.lr.warmup_epochs` in config.
- """
- return self.dict["Optimizer"]["lr"]["warmup_epoch"]
- def get_label_dict_path(self) -> str:
- """get label dict file path
- Returns:
- str: the label dict file path, i.e., `PostProcess.Topk.class_id_map_file` in config.
- """
- return self.dict["PostProcess"]["Topk"]["class_id_map_file"]
- def get_batch_size(self, mode="train") -> int:
- """get batch size
- Args:
- mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Returns:
- int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config.
- """
- return self.dict["DataLoader"]["Train"]["sampler"]["batch_size"]
- def get_qat_epochs_iters(self) -> int:
- """get qat epochs
- Returns:
- int: the epochs value.
- """
- return self.get_epochs_iters()
- def get_qat_learning_rate(self) -> float:
- """get qat learning rate
- Returns:
- float: the learning rate value.
- """
- return self.get_learning_rate()
- def _get_arch_name(self) -> str:
- """get architecture name of model
- Returns:
- str: the model arch name, i.e., `Arch.name` in config.
- """
- return self.dict["Arch"]["name"]
- def _get_dataset_root(self) -> str:
- """get root directory of dataset, i.e. `DataLoader.Train.dataset.image_root`
- Returns:
- str: the root directory of dataset
- """
- return self.dict["DataLoader"]["Train"]["dataset"]["image_root"]
- def get_train_save_dir(self) -> str:
- """get the directory to save output
- Returns:
- str: the directory to save output
- """
- return self["Global"]["output_dir"]
|