| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...base import BaseRunner
- from ...base.utils.subprocess import CompletedProcess
- class ClsRunner(BaseRunner):
- """Cls Runner"""
- def train(
- self,
- config_path: str,
- cli_args: list,
- device: str,
- ips: str,
- save_dir: str,
- do_eval=True,
- ) -> CompletedProcess:
- """train model
- Args:
- config_path (str): the config file path used to train.
- cli_args (list): the additional parameters.
- device (str): the training device.
- ips (str): the ip addresses of nodes when using distribution.
- save_dir (str): the directory path to save training output.
- do_eval (bool, optional): whether or not to evaluate model during training. Defaults to True.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- args, env = self.distributed(device, ips, log_dir=save_dir)
- cmd = [*args, "tools/train.py", "-c", config_path, *cli_args]
- cmd.extend(["-o", f"Global.eval_during_train={do_eval}"])
- return self.run_cmd(
- cmd,
- env=env,
- switch_wdir=True,
- echo=True,
- silent=False,
- capture_output=True,
- log_path=self._get_train_log_path(save_dir),
- )
- def evaluate(
- self, config_path: str, cli_args: list, device: str, ips: str
- ) -> CompletedProcess:
- """run model evaluating
- Args:
- config_path (str): the config file path used to evaluate.
- cli_args (list): the additional parameters.
- device (str): the evaluating device.
- ips (str): the ip addresses of nodes when using distribution.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- args, env = self.distributed(device, ips)
- cmd = [*args, "tools/eval.py", "-c", config_path, *cli_args]
- cp = self.run_cmd(
- cmd, env=env, switch_wdir=True, echo=True, silent=False, capture_output=True
- )
- if cp.returncode == 0:
- metric_dict = _extract_eval_metrics(cp.stdout)
- cp.metrics = metric_dict
- return cp
- def predict(
- self, config_path: str, cli_args: list, device: str
- ) -> CompletedProcess:
- """run predicting using dynamic mode
- Args:
- config_path (str): the config file path used to predict.
- cli_args (list): the additional parameters.
- device (str): unused.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- # `device` unused
- cmd = [self.python, "tools/infer.py", "-c", config_path, *cli_args]
- return self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- def export(
- self, config_path: str, cli_args: list, device: str, save_dir: str = None
- ) -> CompletedProcess:
- """run exporting
- Args:
- config_path (str): the path of config file used to export.
- cli_args (list): the additional parameters.
- device (str): unused.
- save_dir (str, optional): the directory path to save exporting output. Defaults to None.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- # `device` unused
- cmd = [
- self.python,
- "tools/export_model.py",
- "-c",
- config_path,
- *cli_args,
- "-o",
- "Global.export_for_fd=True",
- ]
- cp = self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- return cp
- def infer(self, config_path: str, cli_args: list, device: str) -> CompletedProcess:
- """run predicting using inference model
- Args:
- config_path (str): the path of config file used to predict.
- cli_args (list): the additional parameters.
- device (str): unused.
- Returns:
- CompletedProcess: the result of inferring subprocess execution.
- """
- # `device` unused
- cmd = [self.python, "python/predict_cls.py", "-c", config_path, *cli_args]
- return self.run_cmd(cmd, switch_wdir="deploy", echo=True, silent=False)
- def compression(
- self,
- config_path: str,
- train_cli_args: list,
- export_cli_args: list,
- device: str,
- train_save_dir: str,
- ) -> CompletedProcess:
- """run compression model
- Args:
- config_path (str): the path of config file used to predict.
- train_cli_args (list): the additional training parameters.
- export_cli_args (list): the additional exporting parameters.
- device (str): the running device.
- train_save_dir (str): the directory path to save output.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- # Step 1: Train model
- cp_train = self.train(config_path, train_cli_args, device, None, train_save_dir)
- # Step 2: Export model
- weight_path = os.path.join(train_save_dir, "best_model", "model")
- export_cli_args = [
- *export_cli_args,
- "-o",
- f"Global.pretrained_model={weight_path}",
- ]
- cp_export = self.export(config_path, export_cli_args, device)
- return cp_train, cp_export
- def _extract_eval_metrics(stdout: str) -> dict:
- """extract evaluation metrics from training log
- Args:
- stdout (str): the training log
- Returns:
- dict: the training metric
- """
- import re
- _DP = r"[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?"
- patterns = [
- r"\[Eval\]\[Epoch 0\]\[Avg\].*top1: (_dp)".replace("_dp", _DP),
- r"\[Eval\]\[Epoch 0\]\[Avg\].*top1: (_dp), top5: (_dp)".replace("_dp", _DP),
- r"\[Eval\]\[Epoch 0\]\[Avg\].*recall1: (_dp), recall5: (_dp), mAP: (_dp)".replace(
- "_dp", _DP
- ),
- r"\[Eval\]\[Epoch 0\]\[Avg\].*MultiLabelMAP\(integral\): (_dp)".replace(
- "_dp", _DP
- ),
- r"\[Eval\]\[Epoch 0\]\[Avg\].*evalres:\ ma: (_dp)".replace("_dp", _DP),
- ]
- keys = [
- ["val.top1"],
- ["val.top1", "val.top5"],
- ["recall1", "recall5", "mAP"],
- ["MultiLabelMAP"],
- ["evalres: ma"],
- ]
- metric_dict = dict()
- for pattern, key in zip(patterns, keys):
- pattern = re.compile(pattern)
- for line in stdout.splitlines():
- match = pattern.search(line)
- if match:
- for k, v in zip(key, map(float, match.groups())):
- metric_dict[k] = v
- return metric_dict
|