ConvNeXt_base_224.yaml 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 300
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. update_freq: 4 # for 8 cards
  19. # mixed precision
  20. AMP:
  21. use_amp: False
  22. use_fp16_test: False
  23. scale_loss: 128.0
  24. use_dynamic_loss_scaling: True
  25. use_promote: False
  26. # O1: mixed fp16, O2: pure fp16
  27. level: O1
  28. # model architecture
  29. Arch:
  30. name: ConvNeXt_base_224
  31. class_num: 1000
  32. drop_path_rate: 0.1
  33. layer_scale_init_value: 1e-6
  34. head_init_scale: 1.0
  35. # loss function config for traing/eval process
  36. Loss:
  37. Train:
  38. - CELoss:
  39. weight: 1.0
  40. epsilon: 0.1
  41. Eval:
  42. - CELoss:
  43. weight: 1.0
  44. Optimizer:
  45. name: AdamW
  46. beta1: 0.9
  47. beta2: 0.999
  48. epsilon: 1e-8
  49. weight_decay: 0.05
  50. one_dim_param_no_weight_decay: True
  51. lr:
  52. # for 8 cards
  53. name: Cosine
  54. learning_rate: 4e-3 # lr 4e-3 for total_batch_size 4096
  55. eta_min: 1e-6
  56. warmup_epoch: 20
  57. warmup_start_lr: 0
  58. # data loader for train and eval
  59. DataLoader:
  60. Train:
  61. dataset:
  62. name: ImageNetDataset
  63. image_root: ./dataset/ILSVRC2012/
  64. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  65. transform_ops:
  66. - DecodeImage:
  67. to_rgb: True
  68. channel_first: False
  69. - RandCropImage:
  70. size: 224
  71. interpolation: bicubic
  72. backend: pil
  73. - RandFlipImage:
  74. flip_code: 1
  75. - TimmAutoAugment:
  76. config_str: rand-m9-mstd0.5-inc1
  77. interpolation: bicubic
  78. img_size: 224
  79. - NormalizeImage:
  80. scale: 1.0/255.0
  81. mean: [0.485, 0.456, 0.406]
  82. std: [0.229, 0.224, 0.225]
  83. order: ''
  84. - RandomErasing:
  85. EPSILON: 0.25
  86. sl: 0.02
  87. sh: 1.0/3.0
  88. r1: 0.3
  89. attempt: 10
  90. use_log_aspect: True
  91. mode: pixel
  92. batch_transform_ops:
  93. - OpSampler:
  94. MixupOperator:
  95. alpha: 0.8
  96. prob: 0.5
  97. CutmixOperator:
  98. alpha: 1.0
  99. prob: 0.5
  100. sampler:
  101. name: DistributedBatchSampler
  102. batch_size: 128
  103. drop_last: True
  104. shuffle: True
  105. loader:
  106. num_workers: 4
  107. use_shared_memory: True
  108. Eval:
  109. dataset:
  110. name: ImageNetDataset
  111. image_root: ./dataset/ILSVRC2012/
  112. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  113. transform_ops:
  114. - DecodeImage:
  115. to_rgb: True
  116. channel_first: False
  117. - ResizeImage:
  118. resize_short: 256
  119. interpolation: bicubic
  120. backend: pil
  121. - CropImage:
  122. size: 224
  123. - NormalizeImage:
  124. scale: 1.0/255.0
  125. mean: [0.485, 0.456, 0.406]
  126. std: [0.229, 0.224, 0.225]
  127. order: ''
  128. sampler:
  129. name: DistributedBatchSampler
  130. batch_size: 128
  131. drop_last: False
  132. shuffle: False
  133. loader:
  134. num_workers: 4
  135. use_shared_memory: True
  136. Infer:
  137. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  138. batch_size: 10
  139. transforms:
  140. - DecodeImage:
  141. to_rgb: True
  142. channel_first: False
  143. - ResizeImage:
  144. resize_short: 256
  145. interpolation: bicubic
  146. backend: pil
  147. - CropImage:
  148. size: 224
  149. - NormalizeImage:
  150. scale: 1.0/255.0
  151. mean: [0.485, 0.456, 0.406]
  152. std: [0.229, 0.224, 0.225]
  153. order: ''
  154. - ToCHWImage:
  155. PostProcess:
  156. name: Topk
  157. topk: 5
  158. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  159. Metric:
  160. Eval:
  161. - TopkAcc:
  162. topk: [1, 5]