ConvNeXt_tiny.yaml 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 300
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. update_freq: 4 # for 8 cards
  19. # model ema
  20. #EMA:
  21. # decay: 0.9999
  22. # mixed precision
  23. AMP:
  24. use_amp: False
  25. use_fp16_test: False
  26. scale_loss: 128.0
  27. use_dynamic_loss_scaling: True
  28. use_promote: False
  29. # O1: mixed fp16, O2: pure fp16
  30. level: O1
  31. # model architecture
  32. Arch:
  33. name: ConvNeXt_tiny
  34. class_num: 1000
  35. drop_path_rate: 0.1
  36. layer_scale_init_value: 1e-6
  37. head_init_scale: 1.0
  38. # loss function config for traing/eval process
  39. Loss:
  40. Train:
  41. - CELoss:
  42. weight: 1.0
  43. epsilon: 0.1
  44. Eval:
  45. - CELoss:
  46. weight: 1.0
  47. Optimizer:
  48. name: AdamW
  49. beta1: 0.9
  50. beta2: 0.999
  51. epsilon: 1e-8
  52. weight_decay: 0.05
  53. one_dim_param_no_weight_decay: True
  54. lr:
  55. # for 8 cards
  56. name: Cosine
  57. learning_rate: 4e-3 # lr 4e-3 for total_batch_size 4096
  58. eta_min: 1e-6
  59. warmup_epoch: 20
  60. warmup_start_lr: 0
  61. # data loader for train and eval
  62. DataLoader:
  63. Train:
  64. dataset:
  65. name: ImageNetDataset
  66. image_root: ./dataset/ILSVRC2012/
  67. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  68. transform_ops:
  69. - DecodeImage:
  70. to_rgb: True
  71. channel_first: False
  72. - RandCropImage:
  73. size: 224
  74. interpolation: bicubic
  75. backend: pil
  76. - RandFlipImage:
  77. flip_code: 1
  78. - TimmAutoAugment:
  79. config_str: rand-m9-mstd0.5-inc1
  80. interpolation: bicubic
  81. img_size: 224
  82. - NormalizeImage:
  83. scale: 1.0/255.0
  84. mean: [0.485, 0.456, 0.406]
  85. std: [0.229, 0.224, 0.225]
  86. order: ''
  87. - RandomErasing:
  88. EPSILON: 0.25
  89. sl: 0.02
  90. sh: 1.0/3.0
  91. r1: 0.3
  92. attempt: 10
  93. use_log_aspect: True
  94. mode: pixel
  95. batch_transform_ops:
  96. - OpSampler:
  97. MixupOperator:
  98. alpha: 0.8
  99. prob: 0.5
  100. CutmixOperator:
  101. alpha: 1.0
  102. prob: 0.5
  103. sampler:
  104. name: DistributedBatchSampler
  105. batch_size: 128
  106. drop_last: True
  107. shuffle: True
  108. loader:
  109. num_workers: 4
  110. use_shared_memory: True
  111. Eval:
  112. dataset:
  113. name: ImageNetDataset
  114. image_root: ./dataset/ILSVRC2012/
  115. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  116. transform_ops:
  117. - DecodeImage:
  118. to_rgb: True
  119. channel_first: False
  120. - ResizeImage:
  121. resize_short: 256
  122. interpolation: bicubic
  123. backend: pil
  124. - CropImage:
  125. size: 224
  126. - NormalizeImage:
  127. scale: 1.0/255.0
  128. mean: [0.485, 0.456, 0.406]
  129. std: [0.229, 0.224, 0.225]
  130. order: ''
  131. sampler:
  132. name: DistributedBatchSampler
  133. batch_size: 128
  134. drop_last: False
  135. shuffle: False
  136. loader:
  137. num_workers: 4
  138. use_shared_memory: True
  139. Infer:
  140. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  141. batch_size: 10
  142. transforms:
  143. - DecodeImage:
  144. to_rgb: True
  145. channel_first: False
  146. - ResizeImage:
  147. resize_short: 256
  148. interpolation: bicubic
  149. backend: pil
  150. - CropImage:
  151. size: 224
  152. - NormalizeImage:
  153. scale: 1.0/255.0
  154. mean: [0.485, 0.456, 0.406]
  155. std: [0.229, 0.224, 0.225]
  156. order: ''
  157. - ToCHWImage:
  158. PostProcess:
  159. name: Topk
  160. topk: 5
  161. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  162. Metric:
  163. Eval:
  164. - TopkAcc:
  165. topk: [1, 5]