MobileNetV1_x1_0.yaml 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 120
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. # mixed precision
  19. AMP:
  20. use_amp: False
  21. use_fp16_test: False
  22. scale_loss: 128.0
  23. use_dynamic_loss_scaling: True
  24. use_promote: False
  25. # O1: mixed fp16, O2: pure fp16
  26. level: O1
  27. # model architecture
  28. Arch:
  29. name: MobileNetV1
  30. class_num: 1000
  31. # loss function config for traing/eval process
  32. Loss:
  33. Train:
  34. - CELoss:
  35. weight: 1.0
  36. Eval:
  37. - CELoss:
  38. weight: 1.0
  39. Optimizer:
  40. name: Momentum
  41. momentum: 0.9
  42. lr:
  43. name: Piecewise
  44. learning_rate: 0.1
  45. decay_epochs: [30, 60, 90]
  46. values: [0.1, 0.01, 0.001, 0.0001]
  47. regularizer:
  48. name: 'L2'
  49. coeff: 0.00003
  50. # data loader for train and eval
  51. DataLoader:
  52. Train:
  53. dataset:
  54. name: ImageNetDataset
  55. image_root: ./dataset/ILSVRC2012/
  56. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  57. transform_ops:
  58. - DecodeImage:
  59. to_rgb: True
  60. channel_first: False
  61. - RandCropImage:
  62. size: 224
  63. - RandFlipImage:
  64. flip_code: 1
  65. - NormalizeImage:
  66. scale: 1.0/255.0
  67. mean: [0.485, 0.456, 0.406]
  68. std: [0.229, 0.224, 0.225]
  69. order: ''
  70. sampler:
  71. name: DistributedBatchSampler
  72. batch_size: 64
  73. drop_last: False
  74. shuffle: True
  75. loader:
  76. num_workers: 8
  77. use_shared_memory: True
  78. Eval:
  79. dataset:
  80. name: ImageNetDataset
  81. image_root: ./dataset/ILSVRC2012/
  82. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  83. transform_ops:
  84. - DecodeImage:
  85. to_rgb: True
  86. channel_first: False
  87. - ResizeImage:
  88. resize_short: 256
  89. - CropImage:
  90. size: 224
  91. - NormalizeImage:
  92. scale: 1.0/255.0
  93. mean: [0.485, 0.456, 0.406]
  94. std: [0.229, 0.224, 0.225]
  95. order: ''
  96. sampler:
  97. name: DistributedBatchSampler
  98. batch_size: 64
  99. drop_last: False
  100. shuffle: False
  101. loader:
  102. num_workers: 4
  103. use_shared_memory: True
  104. Infer:
  105. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  106. batch_size: 10
  107. transforms:
  108. - DecodeImage:
  109. to_rgb: True
  110. channel_first: False
  111. - ResizeImage:
  112. resize_short: 256
  113. - CropImage:
  114. size: 224
  115. - NormalizeImage:
  116. scale: 1.0/255.0
  117. mean: [0.485, 0.456, 0.406]
  118. std: [0.229, 0.224, 0.225]
  119. order: ''
  120. - ToCHWImage:
  121. PostProcess:
  122. name: Topk
  123. topk: 5
  124. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  125. Metric:
  126. Train:
  127. - TopkAcc:
  128. topk: [1, 5]
  129. Eval:
  130. - TopkAcc:
  131. topk: [1, 5]