MobileNetV4_conv_medium.yaml 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 500
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 320, 320]
  15. save_inference_dir: ./inference
  16. # mixed precision
  17. AMP:
  18. use_amp: True
  19. use_fp16_test: False
  20. scale_loss: 128.0
  21. use_dynamic_loss_scaling: True
  22. use_promote: False
  23. # O1: mixed fp16, O2: pure fp16
  24. level: O1
  25. # model architecture
  26. Arch:
  27. name: MobileNetV4_conv_medium
  28. drop_rate: 0.2
  29. drop_path_rate: 0.1
  30. class_num: 1000
  31. # loss function config for traing/eval process
  32. Loss:
  33. Train:
  34. - CELoss:
  35. weight: 1.0
  36. epsilon: 0.1
  37. Eval:
  38. - CELoss:
  39. weight: 1.0
  40. Optimizer:
  41. name: AdamW
  42. beta1: 0.9
  43. beta2: 0.999
  44. epsilon: 1e-8
  45. weight_decay: 0.1
  46. clip_grad: 5.0
  47. no_weight_decay_name: null
  48. one_dim_param_no_weight_decay: True
  49. lr:
  50. # for 8 cards
  51. name: Cosine
  52. learning_rate: 0.002
  53. eta_min: 0
  54. warmup_epoch: 20
  55. warmup_start_lr: 0
  56. EMA:
  57. decay: 0.9998
  58. # data loader for train and eval
  59. DataLoader:
  60. Train:
  61. dataset:
  62. name: ImageNetDataset
  63. image_root: ./dataset/ILSVRC2012/
  64. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  65. transform_ops:
  66. - DecodeImage:
  67. to_rgb: True
  68. channel_first: False
  69. - RandCropImage:
  70. size: 256
  71. interpolation: bicubic
  72. backend: pil
  73. - RandFlipImage:
  74. flip_code: 1
  75. - TimmAutoAugment:
  76. config_str: rand-m8-inc1-mstd1.0
  77. interpolation: bicubic
  78. img_size: 256
  79. - NormalizeImage:
  80. scale: 1.0/255.0
  81. mean: [0.485, 0.456, 0.406]
  82. std: [0.229, 0.224, 0.225]
  83. order: ''
  84. - RandomErasing:
  85. EPSILON: 0.25
  86. sl: 0.02
  87. sh: 1.0/3.0
  88. r1: 0.3
  89. attempt: 10
  90. use_log_aspect: True
  91. mode: pixel
  92. batch_transform_ops:
  93. - OpSampler:
  94. MixupOperator:
  95. alpha: 0.8
  96. prob: 0.5
  97. CutmixOperator:
  98. alpha: 1.0
  99. prob: 0.5
  100. sampler:
  101. name: DistributedBatchSampler
  102. batch_size: 512
  103. drop_last: False
  104. shuffle: True
  105. loader:
  106. num_workers: 12
  107. use_shared_memory: True
  108. Eval:
  109. dataset:
  110. name: ImageNetDataset
  111. image_root: ./dataset/ILSVRC2012/
  112. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  113. transform_ops:
  114. - DecodeImage:
  115. to_rgb: True
  116. channel_first: False
  117. - ResizeImage:
  118. backend: pil
  119. interpolation: bicubic
  120. resize_short: 320
  121. - CropImage:
  122. size: 320
  123. - NormalizeImage:
  124. scale: 1.0/255.0
  125. mean: [0.485, 0.456, 0.406]
  126. std: [0.229, 0.224, 0.225]
  127. order: ''
  128. sampler:
  129. name: DistributedBatchSampler
  130. batch_size: 64
  131. drop_last: False
  132. shuffle: False
  133. loader:
  134. num_workers: 12
  135. use_shared_memory: True
  136. Infer:
  137. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  138. batch_size: 10
  139. transforms:
  140. - DecodeImage:
  141. to_rgb: True
  142. channel_first: False
  143. - ResizeImage:
  144. backend: pil
  145. interpolation: bicubic
  146. resize_short: 320
  147. - CropImage:
  148. size: 320
  149. - NormalizeImage:
  150. scale: 1.0/255.0
  151. mean: [0.485, 0.456, 0.406]
  152. std: [0.229, 0.224, 0.225]
  153. order: ''
  154. - ToCHWImage:
  155. PostProcess:
  156. name: Topk
  157. topk: 5
  158. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  159. Metric:
  160. Train:
  161. - TopkAcc:
  162. topk: [1, 5]
  163. Eval:
  164. - TopkAcc:
  165. topk: [1, 5]