PP-HGNetV2-B0.yaml 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. ## Note: This config is only used for finetune training. The ImageNet metrics in PaddleClas are not trained through this config.
  2. # global configs
  3. Global:
  4. checkpoints: null
  5. pretrained_model: null
  6. output_dir: ./output/
  7. device: gpu
  8. save_interval: 1
  9. eval_during_train: True
  10. eval_interval: 1
  11. epochs: 200
  12. print_batch_step: 10
  13. use_visualdl: False
  14. # used for static mode and model export
  15. image_shape: [3, 224, 224]
  16. save_inference_dir: ./inference
  17. # training model under @to_static
  18. to_static: False
  19. use_dali: False
  20. # mixed precision training
  21. AMP:
  22. use_amp: True
  23. use_fp16_test: False
  24. scale_loss: 128.0
  25. use_dynamic_loss_scaling: True
  26. use_promote: False
  27. # O1: mixed fp16, O2: pure fp16
  28. level: O1
  29. # model architecture
  30. Arch:
  31. name: PPHGNetV2_B0
  32. class_num: 1000
  33. pretrained: True # ssld pretrained
  34. # loss function config for traing/eval process
  35. Loss:
  36. Train:
  37. - CELoss:
  38. weight: 1.0
  39. epsilon: 0.1
  40. Eval:
  41. - CELoss:
  42. weight: 1.0
  43. Optimizer:
  44. name: Momentum
  45. momentum: 0.9
  46. lr:
  47. name: Cosine
  48. # for global bs 1024, when finetune training, you need to reduce learning_rate manually
  49. learning_rate: 0.5
  50. warmup_epoch: 5
  51. regularizer:
  52. name: 'L2'
  53. coeff: 0.00002
  54. # data loader for train and eval
  55. DataLoader:
  56. Train:
  57. dataset:
  58. name: ImageNetDataset
  59. image_root: ./dataset/ILSVRC2012/
  60. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  61. transform_ops:
  62. - DecodeImage:
  63. to_rgb: True
  64. channel_first: False
  65. - RandCropImage:
  66. size: 224
  67. interpolation: bicubic
  68. backend: pil
  69. - RandFlipImage:
  70. flip_code: 1
  71. - TimmAutoAugment:
  72. config_str: rand-m7-mstd0.5-inc1
  73. interpolation: bicubic
  74. img_size: 224
  75. - NormalizeImage:
  76. scale: 1.0/255.0
  77. mean: [0.485, 0.456, 0.406]
  78. std: [0.229, 0.224, 0.225]
  79. order: ''
  80. - RandomErasing:
  81. EPSILON: 0.25
  82. sl: 0.02
  83. sh: 1.0/3.0
  84. r1: 0.3
  85. attempt: 10
  86. use_log_aspect: True
  87. mode: pixel
  88. sampler:
  89. name: DistributedBatchSampler
  90. batch_size: 128
  91. drop_last: False
  92. shuffle: True
  93. loader:
  94. num_workers: 16
  95. use_shared_memory: True
  96. Eval:
  97. dataset:
  98. name: ImageNetDataset
  99. image_root: ./dataset/ILSVRC2012/
  100. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  101. transform_ops:
  102. - DecodeImage:
  103. to_rgb: True
  104. channel_first: False
  105. - ResizeImage:
  106. resize_short: 232
  107. interpolation: bicubic
  108. backend: pil
  109. - CropImage:
  110. size: 224
  111. - NormalizeImage:
  112. scale: 1.0/255.0
  113. mean: [0.485, 0.456, 0.406]
  114. std: [0.229, 0.224, 0.225]
  115. order: ''
  116. sampler:
  117. name: DistributedBatchSampler
  118. batch_size: 128
  119. drop_last: False
  120. shuffle: False
  121. loader:
  122. num_workers: 16
  123. use_shared_memory: True
  124. Infer:
  125. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  126. batch_size: 10
  127. transforms:
  128. - DecodeImage:
  129. to_rgb: True
  130. channel_first: False
  131. - ResizeImage:
  132. resize_short: 232
  133. interpolation: bicubic
  134. backend: pil
  135. - CropImage:
  136. size: 224
  137. - NormalizeImage:
  138. scale: 1.0/255.0
  139. mean: [0.485, 0.456, 0.406]
  140. std: [0.229, 0.224, 0.225]
  141. order: ''
  142. - ToCHWImage:
  143. PostProcess:
  144. name: Topk
  145. topk: 5
  146. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  147. Metric:
  148. Train:
  149. - TopkAcc:
  150. topk: [1, 5]
  151. Eval:
  152. - TopkAcc:
  153. topk: [1, 5]