PP-LCNet_x1_0_ML.yaml 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 10
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 40
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 448, 448]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. use_multilabel: True
  19. # mixed precision
  20. AMP:
  21. use_amp: True
  22. use_fp16_test: False
  23. scale_loss: 128.0
  24. use_dynamic_loss_scaling: True
  25. use_promote: False
  26. # O1: mixed fp16, O2: pure fp16
  27. level: O1
  28. # model ema
  29. EMA:
  30. decay: 0.9997
  31. # model architecture
  32. Arch:
  33. name: PPLCNet_x1_0
  34. class_num: 80
  35. pretrained: True
  36. use_ml_decoder: True
  37. # ml-decoder head
  38. MLDecoder:
  39. query_num: 80 # default: 80, query_num <= class_num
  40. class_num: 80
  41. in_channels: 1280
  42. # loss function config for training/eval process
  43. Loss:
  44. Train:
  45. - MultiLabelAsymmetricLoss:
  46. weight: 1.0
  47. gamma_pos: 0
  48. gamma_neg: 4
  49. clip: 0.05
  50. disable_focal_loss_grad: True
  51. Eval:
  52. - MultiLabelAsymmetricLoss:
  53. weight: 1.0
  54. gamma_pos: 0
  55. gamma_neg: 4
  56. clip: 0.05
  57. disable_focal_loss_grad: True
  58. Optimizer:
  59. name: AdamW
  60. beta1: 0.9
  61. beta2: 0.999
  62. epsilon: 1e-8
  63. weight_decay: 1e-4
  64. one_dim_param_no_weight_decay: True
  65. lr:
  66. name: Cosine
  67. learning_rate: 1e-4
  68. eta_min: 1e-10
  69. warmup_epoch: 5
  70. warmup_start_lr: 1e-6
  71. # data loader for train and eval
  72. DataLoader:
  73. Train:
  74. dataset:
  75. name: MultiLabelDataset
  76. image_root: dataset/coco_ml/images
  77. cls_label_path: dataset/coco_ml/train.txt
  78. transform_ops:
  79. - DecodeImage:
  80. to_rgb: True
  81. channel_first: False
  82. - ResizeImage:
  83. size: 448
  84. interpolation: bilinear
  85. backend: pil
  86. - Cutout:
  87. length: 224
  88. fill_value: none
  89. - RandAugmentV4:
  90. - NormalizeImage:
  91. scale: 1.0/255.0
  92. mean: [0.485, 0.456, 0.406]
  93. std: [0.229, 0.224, 0.225]
  94. order: ''
  95. sampler:
  96. name: DistributedBatchSampler
  97. batch_size: 64
  98. drop_last: False
  99. shuffle: True
  100. loader:
  101. num_workers: 8
  102. use_shared_memory: True
  103. Eval:
  104. dataset:
  105. name: MultiLabelDataset
  106. image_root: dataset/coco_ml/images
  107. cls_label_path: dataset/coco_ml/val.txt
  108. transform_ops:
  109. - DecodeImage:
  110. to_rgb: True
  111. channel_first: False
  112. - ResizeImage:
  113. size: 448
  114. interpolation: bilinear
  115. backend: pil
  116. - NormalizeImage:
  117. scale: 1.0/255.0
  118. mean: [0.485, 0.456, 0.406]
  119. std: [0.229, 0.224, 0.225]
  120. order: ''
  121. sampler:
  122. name: DistributedBatchSampler
  123. batch_size: 16
  124. drop_last: False
  125. shuffle: False
  126. loader:
  127. num_workers: 8
  128. use_shared_memory: True
  129. Infer:
  130. infer_imgs: deploy/images/coco_000000570688.jpg
  131. batch_size: 10
  132. transforms:
  133. - DecodeImage:
  134. to_rgb: True
  135. channel_first: False
  136. - ResizeImage:
  137. size: 448
  138. interpolation: bilinear
  139. backend: pil
  140. - NormalizeImage:
  141. scale: 1.0/255.0
  142. mean: [0.485, 0.456, 0.406]
  143. std: [0.229, 0.224, 0.225]
  144. order: ''
  145. - ToCHWImage:
  146. PostProcess:
  147. name: MultiLabelThreshOutput
  148. threshold: 0.5
  149. class_id_map_file: ppcls/utils/COCO2017_label_list.txt
  150. Metric:
  151. Train:
  152. Eval:
  153. - MultiLabelMAP:
  154. # support list: integral, 11point
  155. # default: integral
  156. map_type: integral