ResNet50.yaml 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 100
  11. print_batch_step: 10
  12. use_visualdl: True
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # training model under @to_static
  17. to_static: False
  18. # mixed precision
  19. AMP:
  20. use_amp: False
  21. use_fp16_test: False
  22. scale_loss: 128.0
  23. use_dynamic_loss_scaling: True
  24. use_promote: False
  25. # O1: mixed fp16, O2: pure fp16
  26. level: O1
  27. # model architecture
  28. Arch:
  29. name: ResNet50
  30. class_num: 1000
  31. pretrained: True
  32. # loss function config for traing/eval process
  33. Loss:
  34. Train:
  35. - CELoss:
  36. weight: 1.0
  37. epsilon: 0.1
  38. Eval:
  39. - CELoss:
  40. weight: 1.0
  41. Optimizer:
  42. name: Momentum
  43. momentum: 0.9
  44. lr:
  45. name: Cosine
  46. learning_rate: 0.1
  47. warmup_epoch: 5
  48. regularizer:
  49. name: 'L2'
  50. coeff: 0.0001
  51. # data loader for train and eval
  52. DataLoader:
  53. Train:
  54. dataset:
  55. name: ClsDataset
  56. image_root: ./dataset/ILSVRC2012/
  57. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  58. transform_ops:
  59. - DecodeImage:
  60. to_rgb: True
  61. channel_first: False
  62. - RandCropImage:
  63. size: 224
  64. - RandFlipImage:
  65. flip_code: 1
  66. - NormalizeImage:
  67. scale: 1.0/255.0
  68. mean: [0.485, 0.456, 0.406]
  69. std: [0.229, 0.224, 0.225]
  70. order: ''
  71. sampler:
  72. name: DistributedBatchSampler
  73. batch_size: 64
  74. drop_last: False
  75. shuffle: True
  76. loader:
  77. num_workers: 4
  78. use_shared_memory: True
  79. Eval:
  80. dataset:
  81. name: ClsDataset
  82. image_root: ./dataset/ILSVRC2012/
  83. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  84. transform_ops:
  85. - DecodeImage:
  86. to_rgb: True
  87. channel_first: False
  88. - ResizeImage:
  89. resize_short: 256
  90. - CropImage:
  91. size: 224
  92. - NormalizeImage:
  93. scale: 1.0/255.0
  94. mean: [0.485, 0.456, 0.406]
  95. std: [0.229, 0.224, 0.225]
  96. order: ''
  97. sampler:
  98. name: DistributedBatchSampler
  99. batch_size: 64
  100. drop_last: False
  101. shuffle: False
  102. loader:
  103. num_workers: 4
  104. use_shared_memory: True
  105. Infer:
  106. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  107. batch_size: 10
  108. transforms:
  109. - DecodeImage:
  110. to_rgb: True
  111. channel_first: False
  112. - ResizeImage:
  113. resize_short: 256
  114. - CropImage:
  115. size: 224
  116. - NormalizeImage:
  117. scale: 1.0/255.0
  118. mean: [0.485, 0.456, 0.406]
  119. std: [0.229, 0.224, 0.225]
  120. order: ''
  121. - ToCHWImage:
  122. PostProcess:
  123. name: Topk
  124. topk: 5
  125. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  126. Metric:
  127. Train:
  128. - TopkAcc:
  129. topk: [1, 5]
  130. Eval:
  131. - TopkAcc:
  132. topk: [1, 5]