| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- Global:
- checkpoints: null
- pretrained_model: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-TSM-R50_8frames_uniform_pretrained.pdparams
- output_dir: ./output/
- device: gpu
- use_visualdl: False
- save_inference_dir: ./inference
- # training model under @to_static
- to_static: False
- algorithm: PP-TSM-R50_8frames_uniform
- MODEL: #MODEL field
- framework: "Recognizer2D" #Mandatory, indicate the type of network, associate to the 'paddlevideo/modeling/framework/' .
- backbone: #Mandatory, indicate the type of backbone, associate to the 'paddlevideo/modeling/backbones/' .
- name: "ResNetTweaksTSM" #Mandatory, The name of backbone.
- pretrained: null
- depth: 50 #Optional, the depth of backbone architecture.
- head:
- name: "ppTSMHead" #Mandatory, indicate the type of head, associate to the 'paddlevideo/modeling/heads'
- num_classes: 400 #Optional, the number of classes to be classified.
- in_channels: 2048 #input channel of the extracted feature.
- drop_ratio: 0.5 #the ratio of dropout
- std: 0.01 #std value in params initialization
- ls_eps: 0.1 # label smooth factor
- DATASET: #DATASET field
- batch_size: 16 #Mandatory, bacth size
- num_workers: 4 #Mandatory, the number of subprocess on each GPU.
- # test_batch_size: 1
- train:
- format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
- data_prefix: "K400_dataset/K400/videos" #Mandatory, train data root path
- file_path: "K400_dataset/K400/train.txt" #Mandatory, train data index file path
- valid:
- format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
- data_prefix: "K400_dataset/K400/videos" #Mandatory, train data root path
- file_path: "K400_dataset/K400/val.txt" #Mandatory, valid data index file path
- test:
- format: "VideoDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
- data_prefix: "K400_dataset/K400/videos" #Mandatory, train data root path
- file_path: "K400_dataset/K400/val.txt" #Mandatory, valid data index file path
- PIPELINE: #PIPELINE field
- train: #Mandotary, indicate the pipeline to deal with the training data, associate to the 'paddlevideo/loader/pipelines/'
- decode:
- name: "VideoDecoder"
- backend: "decord"
- sample:
- name: "Sampler"
- num_seg: 8
- seg_len: 1
- valid_mode: False
- transform: #Mandotary, image transform operator
- - Scale:
- short_size: 256
- - MultiScaleCrop:
- target_size: 256
- - RandomCrop:
- target_size: 224
- - RandomFlip:
- - Image2Array:
- - Normalization:
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- valid: #Mandatory, indicate the pipeline to deal with the validating data. associate to the 'paddlevideo/loader/pipelines/'
- decode:
- name: "VideoDecoder"
- backend: "decord"
- sample:
- name: "Sampler"
- num_seg: 8
- seg_len: 1
- valid_mode: True
- transform:
- - Scale:
- short_size: 256
- - CenterCrop:
- target_size: 224
- - Image2Array:
- - Normalization:
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- test: #Mandatory, indicate the pipeline to deal with the validating data. associate to the 'paddlevideo/loader/pipelines/'
- decode:
- name: "VideoDecoder"
- backend: "decord"
- sample:
- name: "Sampler"
- num_seg: 8
- seg_len: 1
- valid_mode: True
- transform:
- - Scale:
- short_size: 256
- - CenterCrop:
- target_size: 224
- - Image2Array:
- - Normalization:
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- OPTIMIZER: #OPTIMIZER field
- name: 'Momentum'
- momentum: 0.9
- learning_rate:
- iter_step: True
- name: 'CustomWarmupCosineDecay'
- max_epoch: 80
- warmup_epochs: 10
- warmup_start_lr: 0.005
- cosine_base_lr: 0.01
- weight_decay:
- name: 'L2'
- value: 1e-4
- use_nesterov: True
- MIX:
- name: "Mixup"
- alpha: 0.2
- PRECISEBN:
- preciseBN_interval: 5 # epoch interval to do preciseBN, default 1.
- num_iters_preciseBN: 200 # how many batches used to do preciseBN, default 200.
- METRIC:
- name: 'CenterCropMetric'
- INFERENCE:
- name: 'ppTSM_Inference_helper'
- num_seg: 8
- target_size: 224
- Infer:
- transforms:
- - ReadVideo:
- num_seg: 8
- sample_type: 'uniform'
- - Scale:
- short_size: 256
- - CenterCrop:
- target_size: 224
- - Image2Array:
- data_format: 'tchw'
- - NormalizeVideo:
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- PostProcess:
- name: Topk
- topk: 1
- class_id_map_file: data/k400/Kinetics-400_label_list.txt
- model_name: "ppTSM"
- log_interval: 10 #Optional, the interval of logger, default:10
- epochs: 80 #Mandatory, total epoch
- log_level: "INFO" #Optional, the logger level. default: "INFO"
|