| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from typing import Union
- import yaml
- from ....utils.misc import abspath
- from ...base import BaseConfig
- from ..config_utils import merge_config
- class VideoClsConfig(BaseConfig):
- """Image Classification Task Config"""
- def update(self, dict_like_obj: list):
- """update self
- Args:
- dict_like_obj (list): list of pairs(key0.key1.idx.key2=value)
- """
- dict_ = merge_config(self.dict, dict_like_obj)
- self.reset_from_dict(dict_)
- def load(self, config_file_path: str):
- """load config from yaml file
- Args:
- config_file_path (str): the path of yaml file.
- Raises:
- TypeError: the content of yaml file `config_file_path` error.
- """
- dict_ = yaml.load(open(config_file_path, "rb"), Loader=yaml.Loader)
- if not isinstance(dict_, dict):
- raise TypeError
- self.reset_from_dict(dict_)
- def dump(self, config_file_path: str):
- """dump self to yaml file
- Args:
- config_file_path (str): the path to save self as yaml file.
- """
- with open(config_file_path, "w", encoding="utf-8") as f:
- yaml.dump(self.dict, f, default_flow_style=False, sort_keys=False)
- def update_dataset(
- self,
- dataset_path: str,
- dataset_type: str = None,
- *,
- train_list_path: str = None,
- ):
- """update dataset settings
- Args:
- dataset_path (str): the root path of dataset.
- dataset_type (str, optional): dataset type. Defaults to None.
- train_list_path (str, optional): the path of train dataset annotation file . Defaults to None.
- Raises:
- ValueError: the dataset_type error.
- """
- dataset_path = abspath(dataset_path)
- if dataset_type is None:
- dataset_type = "VideoClsDataset"
- if train_list_path:
- train_list_path = f"{train_list_path}"
- else:
- train_list_path = f"{dataset_path}/train.txt"
- if dataset_type in ["VideoClsDataset"]:
- _cfg = {
- "DATASET.train.format": "VideoDataset",
- "DATASET.train.data_prefix": dataset_path,
- "DATASET.train.file_path": train_list_path,
- "DATASET.valid.format": "VideoDataset",
- "DATASET.valid.data_prefix": dataset_path,
- "DATASET.valid.file_path": os.path.join(dataset_path, "val.txt"),
- "DATASET.test.format": "VideoDataset",
- "DATASET.test.data_prefix": dataset_path,
- "DATASET.test.file_path": os.path.join(dataset_path, "val.txt"),
- "Infer.PostProcess.class_id_map_file": os.path.join(
- dataset_path, "label.txt"
- ),
- }
- else:
- raise ValueError(f"{repr(dataset_type)} is not supported.")
- self.update(_cfg)
- def update_batch_size(self, batch_size: int, mode: str = "train"):
- """update batch size setting
- Args:
- batch_size (int): the batch size number to set.
- mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: `mode` error.
- """
- if mode == "train":
- _cfg = {"DATASET.batch_size": batch_size}
- elif mode == "eval":
- _cfg = {"DATASET.test_batch_size": batch_size}
- elif mode == "test":
- _cfg = {"DATASET.test_batch_size": batch_size}
- else:
- raise ValueError("The input `mode` should be train, eval or test.")
- self.update(_cfg)
- def update_learning_rate(self, learning_rate: float):
- """update learning rate
- Args:
- learning_rate (float): the learning rate value to set.
- """
- if (
- self._dict["OPTIMIZER"]["learning_rate"].get("cosine_base_lr", None)
- is not None
- ):
- _cfg = {"OPTIMIZER.learning_rate.cosine_base_lr": learning_rate}
- else:
- raise ValueError("unsupported lr format")
- self.update(_cfg)
- def update_warmup_epochs(self, warmup_epochs: int):
- """update warmup epochs
- Args:
- warmup_epochs (int): the warmup epochs value to set.
- """
- _cfg = {"OPTIMIZER.learning_rate.warmup_epochs": warmup_epochs}
- self.update(_cfg)
- def update_pretrained_weights(self, pretrained_model: str):
- """update pretrained weight path
- Args:
- pretrained_model (str): the local path or url of pretrained weight file to set.
- """
- assert isinstance(
- pretrained_model, (str, type(None))
- ), "The 'pretrained_model' should be a string, indicating the path to the '*.pdparams' file, or 'None', \
- indicating that no pretrained model to be used."
- if pretrained_model is None:
- self.update({"Global.pretrained_model", None})
- else:
- if pretrained_model.lower() == "default":
- self.update({"Global.pretrained_model", None})
- else:
- if not pretrained_model.startswith(("http://", "https://")):
- pretrained_model = abspath(pretrained_model)
- self.update({"Global.pretrained_model": pretrained_model})
- def update_num_classes(self, num_classes: int):
- """update classes number
- Args:
- num_classes (int): the classes number value to set.
- """
- if self._dict["model_name"] == "ppTSMv2":
- update_str_list = {"MODEL.backbone.class_num": num_classes}
- self.update(update_str_list)
- else:
- update_str_list = {"MODEL.head.num_classes": num_classes}
- self.update(update_str_list)
- def _update_slim_config(self, slim_config_path: str):
- """update slim settings
- Args:
- slim_config_path (str): the path to slim config yaml file.
- """
- slim_config = yaml.load(open(slim_config_path, "rb"), Loader=yaml.Loader)[
- "Slim"
- ]
- self.update({"Slim": slim_config})
- def _update_amp(self, amp: Union[None, str]):
- """update AMP settings
- Args:
- amp (None | str): the AMP settings.
- Raises:
- ValueError: AMP setting `amp` error, missing field `AMP`.
- """
- if amp is None or amp == "OFF":
- if "AMP" in self.dict:
- self._dict.pop("AMP")
- else:
- if "AMP" not in self.dict:
- raise ValueError("Config must have AMP information.")
- _cfg = {"AMP.use_amp": True, "AMP.level": amp}
- self.update(_cfg)
- def update_num_workers(self, num_workers: int):
- """update workers number of train and eval dataloader
- Args:
- num_workers (int): the value of train and eval dataloader workers number to set.
- """
- _cfg = {
- "DATASET.num_workers": num_workers,
- }
- self.update(_cfg)
- def update_shared_memory(self, shared_memeory: bool):
- """update shared memory setting of train and eval dataloader
- Args:
- shared_memeory (bool): whether or not to use shared memory
- """
- assert isinstance(shared_memeory, bool), "shared_memeory should be a bool"
- _cfg = [
- f"DataLoader.Train.loader.use_shared_memory={shared_memeory}",
- f"DataLoader.Eval.loader.use_shared_memory={shared_memeory}",
- ]
- self.update(_cfg)
- def update_shuffle(self, shuffle: bool):
- """update shuffle setting of train and eval dataloader
- Args:
- shuffle (bool): whether or not to shuffle the data
- """
- assert isinstance(shuffle, bool), "shuffle should be a bool"
- _cfg = [
- f"DataLoader.Train.loader.shuffle={shuffle}",
- f"DataLoader.Eval.loader.shuffle={shuffle}",
- ]
- self.update(_cfg)
- def update_dali(self, dali: bool):
- """enable DALI setting of train and eval dataloader
- Args:
- dali (bool): whether or not to use DALI
- """
- assert isinstance(dali, bool), "dali should be a bool"
- _cfg = [
- f"Global.use_dali={dali}",
- f"Global.use_dali={dali}",
- ]
- self.update(_cfg)
- def update_seed(self, seed: int):
- """update seed
- Args:
- seed (int): the random seed value to set
- """
- _cfg = {"Global.seed": seed}
- self.update(_cfg)
- def update_device(self, device: str):
- """update device setting
- Args:
- device (str): the running device to set
- """
- device = device.split(":")[0]
- _cfg = {"Global.device": device}
- self.update(_cfg)
- def update_label_dict_path(self, dict_path: str):
- """update label dict file path
- Args:
- dict_path (str): the path of label dict file to set
- """
- _cfg = {
- "PostProcess.Topk.class_id_map_file": {abspath(dict_path)},
- }
- self.update(_cfg)
- def _update_to_static(self, dy2st: bool):
- """update config to set dynamic to static mode
- Args:
- dy2st (bool): whether or not to use the dynamic to static mode.
- """
- self.update({"to_static": dy2st})
- def _update_use_vdl(self, use_vdl: bool):
- """update config to set VisualDL
- Args:
- use_vdl (bool): whether or not to use VisualDL.
- """
- self.update({"Global.use_visuald": use_vdl})
- def _update_epochs(self, epochs: int):
- """update epochs setting
- Args:
- epochs (int): the epochs number value to set
- """
- self.update({"epochs": epochs})
- def _update_checkpoints(self, resume_path: Union[None, str]):
- """update checkpoint setting
- Args:
- resume_path (None | str): the resume training setting. if is `None`, train from scratch, otherwise,
- train from checkpoint file that path is `.pdparams` file.
- """
- if resume_path is not None:
- resume_path = resume_path.replace(".pdparams", "")
- self.update({"Global.checkpoints": resume_path})
- def _update_output_dir(self, save_dir: str):
- """update output directory
- Args:
- save_dir (str): the path to save outputs.
- """
- self.update({"output_dir": abspath(save_dir)})
- def update_log_interval(self, log_interval: int):
- """update log interval(steps)
- Args:
- log_interval (int): the log interval value to set.
- """
- self.update({"log_interval": log_interval})
- def update_eval_interval(self, eval_interval: int):
- """update eval interval(epochs)
- Args:
- eval_interval (int): the eval interval value to set.
- """
- self.update({"val_interval": eval_interval})
- def update_save_interval(self, save_interval: int):
- """update eval interval(epochs)
- Args:
- save_interval (int): the save interval value to set.
- """
- self.update({"save_interval": save_interval})
- def update_log_ranks(self, device):
- """update log ranks
- Args:
- device (str): the running device to set
- """
- log_ranks = device.split(":")[1]
- self.update({"Global.log_ranks": log_ranks})
- def update_print_mem_info(self, print_mem_info: bool):
- """setting print memory info"""
- assert isinstance(print_mem_info, bool), "print_mem_info should be a bool"
- self.update({"Global.print_mem_info": print_mem_info})
- def _update_predict_video(self, infer_video: str, infer_list: str = None):
- """update video to be predicted
- Args:
- infer_video (str): the path to image that to be predicted.
- infer_list (str, optional): the path to file that videos. Defaults to None.
- """
- if infer_list:
- self.update({"Infer.infer_list": infer_list})
- self.update({"Infer.infer_videos": infer_video})
- def _update_save_inference_dir(self, save_inference_dir: str):
- """update directory path to save inference model files
- Args:
- save_inference_dir (str): the directory path to set.
- """
- self.update({"Global.save_inference_dir": abspath(save_inference_dir)})
- def _update_inference_model_dir(self, model_dir: str):
- """update inference model directory
- Args:
- model_dir (str): the directory path of inference model fils that used to predict.
- """
- self.update({"Global.inference_model_dir": abspath(model_dir)})
- def _update_infer_video(self, infer_video: str):
- """update path of image that would be predict
- Args:
- infer_video (str): the image path.
- """
- self.update({"Global.infer_videos": infer_video})
- def _update_infer_device(self, device: str):
- """update the device used in predicting
- Args:
- device (str): the running device setting
- """
- self.update({"Global.use_gpu": device.split(":")[0] == "gpu"})
- def _update_enable_mkldnn(self, enable_mkldnn: bool):
- """update whether to enable MKLDNN
- Args:
- enable_mkldnn (bool): `True` is enable, otherwise is disable.
- """
- self.update({"Global.enable_mkldnn": enable_mkldnn})
- def _update_infer_video_shape(self, img_shape: str):
- """update image cropping shape in the preprocessing
- Args:
- img_shape (str): the shape of cropping in the preprocessing,
- i.e. `PreProcess.transform_ops.1.CropImage.size`.
- """
- self.update({"INFERENCE.target_size": img_shape})
- def _update_save_predict_result(self, save_dir: str):
- """update directory that save predicting output
- Args:
- save_dir (str): the directory path that save predicting output.
- """
- self.update({"Infer.save_dir": save_dir})
- def get_epochs_iters(self) -> int:
- """get epochs
- Returns:
- int: the epochs value, i.e., `Global.epochs` in config.
- """
- return self.dict["Global"]["epochs"]
- def get_log_interval(self) -> int:
- """get log interval(steps)
- Returns:
- int: the log interval value, i.e., `Global.print_batch_step` in config.
- """
- return self.dict["Global"]["print_batch_step"]
- def get_eval_interval(self) -> int:
- """get eval interval(epochs)
- Returns:
- int: the eval interval value, i.e., `Global.eval_interval` in config.
- """
- return self.dict["Global"]["eval_interval"]
- def get_save_interval(self) -> int:
- """get save interval(epochs)
- Returns:
- int: the save interval value, i.e., `Global.save_interval` in config.
- """
- return self.dict["Global"]["save_interval"]
- def get_learning_rate(self) -> float:
- """get learning rate
- Returns:
- float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config.
- """
- return self.dict["Optimizer"]["lr"]["learning_rate"]
- def get_warmup_epochs(self) -> int:
- """get warmup epochs
- Returns:
- int: the warmup epochs value, i.e., `Optimizer.lr.warmup_epochs` in config.
- """
- return self.dict["Optimizer"]["lr"]["warmup_epoch"]
- def get_label_dict_path(self) -> str:
- """get label dict file path
- Returns:
- str: the label dict file path, i.e., `PostProcess.Topk.class_id_map_file` in config.
- """
- return self.dict["PostProcess"]["Topk"]["class_id_map_file"]
- def get_batch_size(self, mode="train") -> int:
- """get batch size
- Args:
- mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Returns:
- int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config.
- """
- return self.dict["DataLoader"]["Train"]["sampler"]["batch_size"]
- def get_qat_epochs_iters(self) -> int:
- """get qat epochs
- Returns:
- int: the epochs value.
- """
- return self.get_epochs_iters()
- def get_qat_learning_rate(self) -> float:
- """get qat learning rate
- Returns:
- float: the learning rate value.
- """
- return self.get_learning_rate()
- def _get_arch_name(self) -> str:
- """get architecture name of model
- Returns:
- str: the model arch name, i.e., `Arch.name` in config.
- """
- return self.dict["Arch"]["name"]
- def _get_dataset_root(self) -> str:
- """get root directory of dataset, i.e. `DataLoader.Train.dataset.video_root`
- Returns:
- str: the root directory of dataset
- """
- return self.dict["DataLoader"]["Train"]["dataset"]["video_root"]
- def get_train_save_dir(self) -> str:
- """get the directory to save output
- Returns:
- str: the directory to save output
- """
- return self["output_dir"]
|