|
|
@@ -0,0 +1,635 @@
|
|
|
+"""
|
|
|
+批量处理 OmniDocBench 图片并生成符合评测要求的预测结果
|
|
|
+
|
|
|
+根据 OmniDocBench 评测要求:
|
|
|
+- 输入:OpenDataLab___OmniDocBench/images 下的所有 .jpg 图片
|
|
|
+- 输出:每个图片对应的 .md、.json 和带标注的 layout 图片文件
|
|
|
+- 输出目录:用于后续的 end2end 评测
|
|
|
+"""
|
|
|
+
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import json
|
|
|
+import tempfile
|
|
|
+import uuid
|
|
|
+import shutil
|
|
|
+import time
|
|
|
+import traceback
|
|
|
+import warnings
|
|
|
+from pathlib import Path
|
|
|
+from typing import List, Dict, Any
|
|
|
+from PIL import Image
|
|
|
+from tqdm import tqdm
|
|
|
+import argparse
|
|
|
+
|
|
|
+# 导入 dots.ocr 相关模块
|
|
|
+from dots_ocr.parser import DotsOCRParser
|
|
|
+from dots_ocr.utils import dict_promptmode_to_prompt
|
|
|
+from dots_ocr.utils.consts import MIN_PIXELS, MAX_PIXELS
|
|
|
+
|
|
|
+# 导入工具函数
|
|
|
+from utils import (
|
|
|
+ get_image_files_from_dir,
|
|
|
+ get_image_files_from_list,
|
|
|
+ get_image_files_from_csv,
|
|
|
+ collect_pid_files
|
|
|
+)
|
|
|
+
|
|
|
+class DotsOCRProcessor:
|
|
|
+ """DotsOCR 处理器"""
|
|
|
+
|
|
|
+ def __init__(self,
|
|
|
+ ip: str = "127.0.0.1",
|
|
|
+ port: int = 8101,
|
|
|
+ model_name: str = "DotsOCR",
|
|
|
+ prompt_mode: str = "prompt_layout_all_en",
|
|
|
+ dpi: int = 200,
|
|
|
+ min_pixels: int = MIN_PIXELS,
|
|
|
+ max_pixels: int = MAX_PIXELS):
|
|
|
+ """
|
|
|
+ 初始化处理器
|
|
|
+
|
|
|
+ Args:
|
|
|
+ ip: vLLM 服务器 IP
|
|
|
+ port: vLLM 服务器端口
|
|
|
+ model_name: 模型名称
|
|
|
+ prompt_mode: 提示模式
|
|
|
+ dpi: PDF 处理 DPI
|
|
|
+ min_pixels: 最小像素数
|
|
|
+ max_pixels: 最大像素数
|
|
|
+ """
|
|
|
+ self.ip = ip
|
|
|
+ self.port = port
|
|
|
+ self.model_name = model_name
|
|
|
+ self.prompt_mode = prompt_mode
|
|
|
+ self.dpi = dpi
|
|
|
+ self.min_pixels = min_pixels
|
|
|
+ self.max_pixels = max_pixels
|
|
|
+
|
|
|
+ # 初始化解析器
|
|
|
+ self.parser = DotsOCRParser(
|
|
|
+ ip=ip,
|
|
|
+ port=port,
|
|
|
+ dpi=dpi,
|
|
|
+ min_pixels=min_pixels,
|
|
|
+ max_pixels=max_pixels,
|
|
|
+ model_name=model_name
|
|
|
+ )
|
|
|
+
|
|
|
+ print(f"DotsOCR Parser 初始化完成:")
|
|
|
+ print(f" - 服务器: {ip}:{port}")
|
|
|
+ print(f" - 模型: {model_name}")
|
|
|
+ print(f" - 提示模式: {prompt_mode}")
|
|
|
+ print(f" - 像素范围: {min_pixels} - {max_pixels}")
|
|
|
+
|
|
|
+ def create_temp_session_dir(self) -> tuple:
|
|
|
+ """创建临时会话目录"""
|
|
|
+ session_id = uuid.uuid4().hex[:8]
|
|
|
+ temp_dir = os.path.join(tempfile.gettempdir(), f"omnidocbench_batch_{session_id}")
|
|
|
+ os.makedirs(temp_dir, exist_ok=True)
|
|
|
+ return temp_dir, session_id
|
|
|
+
|
|
|
+ def save_results_to_output_dir(self, result: Dict, image_name: str, output_dir: str) -> Dict[str, str]:
|
|
|
+ """
|
|
|
+ 将处理结果保存到输出目录
|
|
|
+
|
|
|
+ Args:
|
|
|
+ result: 解析结果
|
|
|
+ image_name: 图片文件名(不含扩展名)
|
|
|
+ output_dir: 输出目录
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: 保存的文件路径
|
|
|
+ """
|
|
|
+ saved_files = {}
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 1. 保存 Markdown 文件(OmniDocBench 评测必需)
|
|
|
+ output_md_path = os.path.join(output_dir, f"{image_name}.md")
|
|
|
+ md_content = ""
|
|
|
+
|
|
|
+ # 优先使用无页眉页脚的版本(符合 OmniDocBench 评测要求)
|
|
|
+ if 'md_content_nohf_path' in result and os.path.exists(result['md_content_nohf_path']):
|
|
|
+ with open(result['md_content_nohf_path'], 'r', encoding='utf-8') as f:
|
|
|
+ md_content = f.read()
|
|
|
+ elif 'md_content_path' in result and os.path.exists(result['md_content_path']):
|
|
|
+ with open(result['md_content_path'], 'r', encoding='utf-8') as f:
|
|
|
+ md_content = f.read()
|
|
|
+ else:
|
|
|
+ md_content = "# 解析失败\n\n未能提取到有效的文档内容。"
|
|
|
+
|
|
|
+ with open(output_md_path, 'w', encoding='utf-8') as f:
|
|
|
+ f.write(md_content)
|
|
|
+ saved_files['md'] = output_md_path
|
|
|
+
|
|
|
+ # 2. 保存 JSON 文件
|
|
|
+ output_json_path = os.path.join(output_dir, f"{image_name}.json")
|
|
|
+ json_data = {}
|
|
|
+
|
|
|
+ if 'layout_info_path' in result and os.path.exists(result['layout_info_path']):
|
|
|
+ with open(result['layout_info_path'], 'r', encoding='utf-8') as f:
|
|
|
+ json_data = json.load(f)
|
|
|
+ else:
|
|
|
+ json_data = {
|
|
|
+ "error": "未能提取到有效的布局信息",
|
|
|
+ "cells": []
|
|
|
+ }
|
|
|
+
|
|
|
+ with open(output_json_path, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(json_data, f, ensure_ascii=False, indent=2)
|
|
|
+ saved_files['json'] = output_json_path
|
|
|
+
|
|
|
+ # 3. 保存带标注的布局图片
|
|
|
+ output_layout_image_path = os.path.join(output_dir, f"{image_name}_layout.jpg")
|
|
|
+
|
|
|
+ if 'layout_image_path' in result and os.path.exists(result['layout_image_path']):
|
|
|
+ # 直接复制布局图片
|
|
|
+ shutil.copy2(result['layout_image_path'], output_layout_image_path)
|
|
|
+ saved_files['layout_image'] = output_layout_image_path
|
|
|
+ else:
|
|
|
+ # 如果没有布局图片,使用原始图片作为占位符
|
|
|
+ try:
|
|
|
+ original_image = Image.open(result.get('original_image_path', ''))
|
|
|
+ original_image.save(output_layout_image_path, 'JPEG', quality=95)
|
|
|
+ saved_files['layout_image'] = output_layout_image_path
|
|
|
+ except Exception as e:
|
|
|
+ saved_files['layout_image'] = None
|
|
|
+
|
|
|
+ # # 4. 可选:保存原始图片副本
|
|
|
+ # output_original_image_path = os.path.join(output_dir, f"{image_name}_original.jpg")
|
|
|
+ # if 'original_image_path' in result and os.path.exists(result['original_image_path']):
|
|
|
+ # shutil.copy2(result['original_image_path'], output_original_image_path)
|
|
|
+ # saved_files['original_image'] = output_original_image_path
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error saving results for {image_name}: {e}")
|
|
|
+
|
|
|
+ return saved_files
|
|
|
+
|
|
|
+ def process_single_image(self, image_path: str, output_dir: str) -> Dict[str, Any]:
|
|
|
+ """
|
|
|
+ 处理单张图片
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_path: 图片路径
|
|
|
+ output_dir: 输出目录
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict: 处理结果
|
|
|
+ """
|
|
|
+ start_time = time.time()
|
|
|
+ image_name = Path(image_path).stem
|
|
|
+
|
|
|
+ result_info = {
|
|
|
+ "image_path": image_path,
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "device": f"{self.ip}:{self.port}",
|
|
|
+ "error": None,
|
|
|
+ "output_files": {}
|
|
|
+ }
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 检查输出文件是否已存在
|
|
|
+ output_md_path = os.path.join(output_dir, f"{image_name}.md")
|
|
|
+ output_json_path = os.path.join(output_dir, f"{image_name}.json")
|
|
|
+ output_layout_path = os.path.join(output_dir, f"{image_name}_layout.jpg")
|
|
|
+
|
|
|
+ if all(os.path.exists(p) for p in [output_md_path, output_json_path, output_layout_path]):
|
|
|
+ result_info.update({
|
|
|
+ "success": True,
|
|
|
+ "processing_time": 0,
|
|
|
+ "output_files": {
|
|
|
+ "md": output_md_path,
|
|
|
+ "json": output_json_path,
|
|
|
+ "layout_image": output_layout_path
|
|
|
+ },
|
|
|
+ "skipped": True
|
|
|
+ })
|
|
|
+ return result_info
|
|
|
+
|
|
|
+ # 创建临时会话目录
|
|
|
+ temp_dir, session_id = self.create_temp_session_dir()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 读取图片
|
|
|
+ image = Image.open(image_path)
|
|
|
+
|
|
|
+ # 使用 DotsOCRParser 处理图片
|
|
|
+ filename = f"omnidocbench_{session_id}"
|
|
|
+ results = self.parser.parse_image(
|
|
|
+ input_path=image,
|
|
|
+ filename=filename,
|
|
|
+ prompt_mode=self.prompt_mode,
|
|
|
+ save_dir=temp_dir,
|
|
|
+ fitz_preprocess=True # 对图片使用 fitz 预处理
|
|
|
+ )
|
|
|
+
|
|
|
+ # 解析结果
|
|
|
+ if not results:
|
|
|
+ raise Exception("未返回解析结果")
|
|
|
+
|
|
|
+ result = results[0] # parse_image 返回单个结果的列表
|
|
|
+
|
|
|
+ # 添加原始图片路径到结果中
|
|
|
+ # result['original_image_path'] = image_path
|
|
|
+
|
|
|
+ # 保存所有结果文件到输出目录
|
|
|
+ saved_files = self.save_results_to_output_dir(result, image_name, output_dir)
|
|
|
+
|
|
|
+ # 验证保存结果
|
|
|
+ success_count = sum(1 for path in saved_files.values() if path and os.path.exists(path))
|
|
|
+
|
|
|
+ if success_count >= 2: # 至少保存了 md 和 json
|
|
|
+ result_info.update({
|
|
|
+ "success": True,
|
|
|
+ "output_files": saved_files
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ raise Exception(f"保存文件不完整 ({success_count}/3)")
|
|
|
+
|
|
|
+ finally:
|
|
|
+ # 清理临时目录
|
|
|
+ if os.path.exists(temp_dir):
|
|
|
+ shutil.rmtree(temp_dir, ignore_errors=True)
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ result_info["error"] = str(e)
|
|
|
+
|
|
|
+ finally:
|
|
|
+ result_info["processing_time"] = time.time() - start_time
|
|
|
+
|
|
|
+ return result_info
|
|
|
+
|
|
|
+
|
|
|
+def process_images_single_process(image_paths: List[str],
|
|
|
+ processor: DotsOCRProcessor,
|
|
|
+ batch_size: int = 1,
|
|
|
+ output_dir: str = "./output") -> List[Dict[str, Any]]:
|
|
|
+ """
|
|
|
+ 单进程版本的图像处理函数
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_paths: 图像路径列表
|
|
|
+ processor: DotsOCR处理器实例
|
|
|
+ batch_size: 批处理大小
|
|
|
+ output_dir: 输出目录
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 处理结果列表
|
|
|
+ """
|
|
|
+ # 创建输出目录
|
|
|
+ output_path = Path(output_dir)
|
|
|
+ output_path.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ all_results = []
|
|
|
+ total_images = len(image_paths)
|
|
|
+
|
|
|
+ print(f"Processing {total_images} images with batch size {batch_size}")
|
|
|
+
|
|
|
+ # 使用tqdm显示进度,添加更多统计信息
|
|
|
+ with tqdm(total=total_images, desc="Processing images", unit="img",
|
|
|
+ bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') as pbar:
|
|
|
+
|
|
|
+ # 按批次处理图像(DotsOCR通常单张处理)
|
|
|
+ for i in range(0, total_images, batch_size):
|
|
|
+ batch = image_paths[i:i + batch_size]
|
|
|
+ batch_start_time = time.time()
|
|
|
+ batch_results = []
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 处理批次中的每张图片
|
|
|
+ for image_path in batch:
|
|
|
+ try:
|
|
|
+ result = processor.process_single_image(image_path, output_dir)
|
|
|
+ batch_results.append(result)
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error processing {image_path}: {e}", file=sys.stderr)
|
|
|
+ traceback.print_exc()
|
|
|
+
|
|
|
+ batch_results.append({
|
|
|
+ "image_path": image_path,
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "device": f"{processor.ip}:{processor.port}",
|
|
|
+ "error": str(e)
|
|
|
+ })
|
|
|
+
|
|
|
+ batch_processing_time = time.time() - batch_start_time
|
|
|
+ all_results.extend(batch_results)
|
|
|
+
|
|
|
+ # 更新进度条
|
|
|
+ success_count = sum(1 for r in batch_results if r.get('success', False))
|
|
|
+ skipped_count = sum(1 for r in batch_results if r.get('skipped', False))
|
|
|
+ total_success = sum(1 for r in all_results if r.get('success', False))
|
|
|
+ total_skipped = sum(1 for r in all_results if r.get('skipped', False))
|
|
|
+ avg_time = batch_processing_time / len(batch)
|
|
|
+
|
|
|
+ pbar.update(len(batch))
|
|
|
+ pbar.set_postfix({
|
|
|
+ 'batch_time': f"{batch_processing_time:.2f}s",
|
|
|
+ 'avg_time': f"{avg_time:.2f}s/img",
|
|
|
+ 'success': f"{total_success}/{len(all_results)}",
|
|
|
+ 'skipped': f"{total_skipped}",
|
|
|
+ 'rate': f"{total_success/len(all_results)*100:.1f}%"
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error processing batch {[Path(p).name for p in batch]}: {e}", file=sys.stderr)
|
|
|
+ traceback.print_exc()
|
|
|
+
|
|
|
+ # 为批次中的所有图像添加错误结果
|
|
|
+ error_results = []
|
|
|
+ for img_path in batch:
|
|
|
+ error_results.append({
|
|
|
+ "image_path": str(img_path),
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "device": f"{processor.ip}:{processor.port}",
|
|
|
+ "error": str(e)
|
|
|
+ })
|
|
|
+ all_results.extend(error_results)
|
|
|
+ pbar.update(len(batch))
|
|
|
+
|
|
|
+ return all_results
|
|
|
+
|
|
|
+
|
|
|
+def process_images_concurrent(image_paths: List[str],
|
|
|
+ processor: DotsOCRProcessor,
|
|
|
+ batch_size: int = 1,
|
|
|
+ output_dir: str = "./output",
|
|
|
+ max_workers: int = 3) -> List[Dict[str, Any]]:
|
|
|
+ """并发版本的图像处理函数"""
|
|
|
+
|
|
|
+ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
+
|
|
|
+ Path(output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ def process_batch(batch_images):
|
|
|
+ """处理一批图像"""
|
|
|
+ batch_results = []
|
|
|
+ for image_path in batch_images:
|
|
|
+ try:
|
|
|
+ result = processor.process_single_image(image_path, output_dir)
|
|
|
+ batch_results.append(result)
|
|
|
+ except Exception as e:
|
|
|
+ batch_results.append({
|
|
|
+ "image_path": image_path,
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "device": f"{processor.ip}:{processor.port}",
|
|
|
+ "error": str(e)
|
|
|
+ })
|
|
|
+ return batch_results
|
|
|
+
|
|
|
+ # 将图像分批
|
|
|
+ batches = [image_paths[i:i + batch_size] for i in range(0, len(image_paths), batch_size)]
|
|
|
+
|
|
|
+ all_results = []
|
|
|
+
|
|
|
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
+ # 提交所有批次
|
|
|
+ future_to_batch = {executor.submit(process_batch, batch): batch for batch in batches}
|
|
|
+
|
|
|
+ # 使用 tqdm 显示进度
|
|
|
+ with tqdm(total=len(image_paths), desc="Processing images") as pbar:
|
|
|
+ for future in as_completed(future_to_batch):
|
|
|
+ try:
|
|
|
+ batch_results = future.result()
|
|
|
+ all_results.extend(batch_results)
|
|
|
+
|
|
|
+ # 更新进度
|
|
|
+ success_count = sum(1 for r in batch_results if r.get('success', False))
|
|
|
+ pbar.update(len(batch_results))
|
|
|
+ pbar.set_postfix({'batch_success': f"{success_count}/{len(batch_results)}"})
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ batch = future_to_batch[future]
|
|
|
+ # 为批次中的所有图像添加错误结果
|
|
|
+ error_results = [
|
|
|
+ {
|
|
|
+ "image_path": img_path,
|
|
|
+ "processing_time": 0,
|
|
|
+ "success": False,
|
|
|
+ "device": f"{processor.ip}:{processor.port}",
|
|
|
+ "error": str(e)
|
|
|
+ }
|
|
|
+ for img_path in batch
|
|
|
+ ]
|
|
|
+ all_results.extend(error_results)
|
|
|
+ pbar.update(len(batch))
|
|
|
+
|
|
|
+ return all_results
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ """主函数"""
|
|
|
+ parser = argparse.ArgumentParser(description="DotsOCR OmniDocBench Processing")
|
|
|
+
|
|
|
+ # 输入参数组
|
|
|
+ input_group = parser.add_mutually_exclusive_group(required=True)
|
|
|
+ input_group.add_argument("--input_dir", type=str, help="Input directory")
|
|
|
+ input_group.add_argument("--input_file_list", type=str, help="Input file list (one file per line)")
|
|
|
+ input_group.add_argument("--input_csv", type=str, help="Input CSV file with image_path and status columns")
|
|
|
+
|
|
|
+ # 输出参数
|
|
|
+ parser.add_argument("--output_dir", type=str, help="Output directory")
|
|
|
+
|
|
|
+ # DotsOCR 参数
|
|
|
+ parser.add_argument("--ip", type=str, default="127.0.0.1", help="vLLM server IP")
|
|
|
+ parser.add_argument("--port", type=int, default=8101, help="vLLM server port")
|
|
|
+ parser.add_argument("--model_name", type=str, default="DotsOCR", help="Model name")
|
|
|
+ parser.add_argument("--prompt_mode", type=str, default="prompt_layout_all_en",
|
|
|
+ choices=list(dict_promptmode_to_prompt.keys()), help="Prompt mode")
|
|
|
+ parser.add_argument("--min_pixels", type=int, default=MIN_PIXELS, help="Minimum pixels")
|
|
|
+ parser.add_argument("--max_pixels", type=int, default=MAX_PIXELS, help="Maximum pixels")
|
|
|
+ parser.add_argument("--dpi", type=int, default=200, help="PDF processing DPI")
|
|
|
+
|
|
|
+ # 处理参数
|
|
|
+ parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
|
|
|
+ parser.add_argument("--input_pattern", type=str, default="*", help="Input file pattern")
|
|
|
+ parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 10 images)")
|
|
|
+ parser.add_argument("--collect_results", type=str, help="收集处理结果到指定CSV文件")
|
|
|
+
|
|
|
+ # 并发参数
|
|
|
+ parser.add_argument("--max_workers", type=int, default=3,
|
|
|
+ help="Maximum number of concurrent workers (should match vLLM data-parallel-size)")
|
|
|
+ parser.add_argument("--use_threading", action="store_true",
|
|
|
+ help="Use multi-threading")
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 获取图像文件列表
|
|
|
+ if args.input_csv:
|
|
|
+ # 从CSV文件读取
|
|
|
+ image_files = get_image_files_from_csv(args.input_csv, "fail")
|
|
|
+ print(f"📊 Loaded {len(image_files)} files from CSV with status filter: fail")
|
|
|
+ elif args.input_file_list:
|
|
|
+ # 从文件列表读取
|
|
|
+ image_files = get_image_files_from_list(args.input_file_list)
|
|
|
+ else:
|
|
|
+ # 从目录读取
|
|
|
+ input_dir = Path(args.input_dir).resolve()
|
|
|
+ print(f"📁 Input dir: {input_dir}")
|
|
|
+
|
|
|
+ if not input_dir.exists():
|
|
|
+ print(f"❌ Input directory does not exist: {input_dir}")
|
|
|
+ return 1
|
|
|
+
|
|
|
+ image_files = get_image_files_from_dir(input_dir, args.input_pattern)
|
|
|
+
|
|
|
+ output_dir = Path(args.output_dir).resolve()
|
|
|
+ print(f"📁 Output dir: {output_dir}")
|
|
|
+ print(f"📊 Found {len(image_files)} image files")
|
|
|
+
|
|
|
+ if args.test_mode:
|
|
|
+ image_files = image_files[:10]
|
|
|
+ print(f"🧪 Test mode: processing only {len(image_files)} images")
|
|
|
+
|
|
|
+ print(f"🌐 Using server: {args.ip}:{args.port}")
|
|
|
+ print(f"📦 Batch size: {args.batch_size}")
|
|
|
+ print(f"🎯 Prompt mode: {args.prompt_mode}")
|
|
|
+
|
|
|
+ # 创建处理器
|
|
|
+ processor = DotsOCRProcessor(
|
|
|
+ ip=args.ip,
|
|
|
+ port=args.port,
|
|
|
+ model_name=args.model_name,
|
|
|
+ prompt_mode=args.prompt_mode,
|
|
|
+ dpi=args.dpi,
|
|
|
+ min_pixels=args.min_pixels,
|
|
|
+ max_pixels=args.max_pixels
|
|
|
+ )
|
|
|
+
|
|
|
+ # 开始处理
|
|
|
+ start_time = time.time()
|
|
|
+
|
|
|
+ # 选择处理方式
|
|
|
+ if args.use_threading:
|
|
|
+ results = process_images_concurrent(
|
|
|
+ image_files,
|
|
|
+ processor,
|
|
|
+ args.batch_size,
|
|
|
+ str(output_dir),
|
|
|
+ args.max_workers
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ results = process_images_single_process(
|
|
|
+ image_files,
|
|
|
+ processor,
|
|
|
+ args.batch_size,
|
|
|
+ str(output_dir)
|
|
|
+ )
|
|
|
+
|
|
|
+ total_time = time.time() - start_time
|
|
|
+
|
|
|
+ # 统计结果
|
|
|
+ success_count = sum(1 for r in results if r.get('success', False))
|
|
|
+ skipped_count = sum(1 for r in results if r.get('skipped', False))
|
|
|
+ error_count = len(results) - success_count
|
|
|
+
|
|
|
+ print(f"\n" + "="*60)
|
|
|
+ print(f"✅ Processing completed!")
|
|
|
+ print(f"📊 Statistics:")
|
|
|
+ print(f" Total files: {len(image_files)}")
|
|
|
+ print(f" Successful: {success_count}")
|
|
|
+ print(f" Skipped: {skipped_count}")
|
|
|
+ print(f" Failed: {error_count}")
|
|
|
+ if len(image_files) > 0:
|
|
|
+ print(f" Success rate: {success_count / len(image_files) * 100:.2f}%")
|
|
|
+ print(f"⏱️ Performance:")
|
|
|
+ print(f" Total time: {total_time:.2f} seconds")
|
|
|
+ if total_time > 0:
|
|
|
+ print(f" Throughput: {len(image_files) / total_time:.2f} images/second")
|
|
|
+ print(f" Avg time per image: {total_time / len(image_files):.2f} seconds")
|
|
|
+
|
|
|
+ # 保存结果统计
|
|
|
+ stats = {
|
|
|
+ "total_files": len(image_files),
|
|
|
+ "success_count": success_count,
|
|
|
+ "skipped_count": skipped_count,
|
|
|
+ "error_count": error_count,
|
|
|
+ "success_rate": success_count / len(image_files) if len(image_files) > 0 else 0,
|
|
|
+ "total_time": total_time,
|
|
|
+ "throughput": len(image_files) / total_time if total_time > 0 else 0,
|
|
|
+ "avg_time_per_image": total_time / len(image_files) if len(image_files) > 0 else 0,
|
|
|
+ "batch_size": args.batch_size,
|
|
|
+ "server": f"{args.ip}:{args.port}",
|
|
|
+ "model": args.model_name,
|
|
|
+ "prompt_mode": args.prompt_mode,
|
|
|
+ "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
+ }
|
|
|
+
|
|
|
+ # 保存最终结果
|
|
|
+ output_file_name = Path(output_dir).name
|
|
|
+ output_file = os.path.join(output_dir, f"{output_file_name}_results.json")
|
|
|
+ final_results = {
|
|
|
+ "stats": stats,
|
|
|
+ "results": results
|
|
|
+ }
|
|
|
+
|
|
|
+ with open(output_file, 'w', encoding='utf-8') as f:
|
|
|
+ json.dump(final_results, f, ensure_ascii=False, indent=2)
|
|
|
+
|
|
|
+ print(f"💾 Results saved to: {output_file}")
|
|
|
+
|
|
|
+ # 收集处理结果
|
|
|
+ if args.collect_results:
|
|
|
+ processed_files = collect_pid_files(output_file)
|
|
|
+ output_file_processed = Path(args.collect_results).resolve()
|
|
|
+ with open(output_file_processed, 'w', encoding='utf-8') as f:
|
|
|
+ f.write("image_path,status\n")
|
|
|
+ for file_path, status in processed_files:
|
|
|
+ f.write(f"{file_path},{status}\n")
|
|
|
+ print(f"💾 Processed files saved to: {output_file_processed}")
|
|
|
+
|
|
|
+ return 0
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"❌ Processing failed: {e}", file=sys.stderr)
|
|
|
+ traceback.print_exc()
|
|
|
+ return 1
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ print(f"🚀 启动DotsOCR单进程程序...")
|
|
|
+ print(f"🔧 CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
|
|
|
+
|
|
|
+ if len(sys.argv) == 1:
|
|
|
+ # 如果没有命令行参数,使用默认配置运行
|
|
|
+ print("ℹ️ No command line arguments provided. Running with default configuration...")
|
|
|
+
|
|
|
+ # 默认配置
|
|
|
+ default_config = {
|
|
|
+ "input_dir": "../../OmniDocBench/OpenDataLab___OmniDocBench/images",
|
|
|
+ "output_dir": "./OmniDocBench_DotsOCR_Results",
|
|
|
+ "ip": "10.192.72.11",
|
|
|
+ "port": "8101",
|
|
|
+ "model_name": "DotsOCR",
|
|
|
+ "prompt_mode": "prompt_layout_all_en",
|
|
|
+ "batch_size": "1",
|
|
|
+ "max_workers": "3",
|
|
|
+ "collect_results": "./OmniDocBench_DotsOCR_Results/processed_files.csv",
|
|
|
+ }
|
|
|
+
|
|
|
+ # 如果需要处理失败的文件,可以使用这个配置
|
|
|
+ # default_config = {
|
|
|
+ # "input_csv": "./OmniDocBench_DotsOCR_Results/processed_files.csv",
|
|
|
+ # "output_dir": "./OmniDocBench_DotsOCR_Results",
|
|
|
+ # "ip": "127.0.0.1",
|
|
|
+ # "port": "8101",
|
|
|
+ # "collect_results": f"./OmniDocBench_DotsOCR_Results/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv",
|
|
|
+ # }
|
|
|
+
|
|
|
+ # 构造参数
|
|
|
+ sys.argv = [sys.argv[0]]
|
|
|
+ for key, value in default_config.items():
|
|
|
+ sys.argv.extend([f"--{key}", str(value)])
|
|
|
+
|
|
|
+ # 测试模式
|
|
|
+ sys.argv.append("--use_threading")
|
|
|
+ # sys.argv.append("--test_mode")
|
|
|
+
|
|
|
+ sys.exit(main())
|