""" Layout Inference Web Application A Streamlit-based layout inference tool that supports image uploads and multiple backend inference engines. """ import streamlit as st import json import os import io import tempfile from PIL import Image import requests # Local utility imports # from utils import infer from dots_ocr.utils import dict_promptmode_to_prompt from dots_ocr.utils.format_transformer import layoutjson2md from dots_ocr.utils.layout_utils import draw_layout_on_image, post_process_cells from dots_ocr.utils.image_utils import get_input_dimensions, get_image_by_fitz_doc from dots_ocr.model.inference import inference_with_vllm from dots_ocr.utils.consts import MIN_PIXELS, MAX_PIXELS import os from PIL import Image from dots_ocr.utils.demo_utils.display import read_image # ==================== Configuration ==================== DEFAULT_CONFIG = { 'ip': "127.0.0.1", 'port_vllm': 8000, 'min_pixels': MIN_PIXELS, 'max_pixels': MAX_PIXELS, 'test_images_dir': "./assets/showcase_origin", } # ==================== Utility Functions ==================== @st.cache_resource def read_image_v2(img: str): if img.startswith(("http://", "https://")): with requests.get(img, stream=True) as response: response.raise_for_status() img = Image.open(io.BytesIO(response.content)) if isinstance(img, str): # img = transform_image_path(img) img, _, _ = read_image(img, use_native=True) elif isinstance(img, Image.Image): pass else: raise ValueError(f"Invalid image type: {type(img)}") return img # ==================== UI Components ==================== def create_config_sidebar(): """Create configuration sidebar""" st.sidebar.header("Configuration Parameters") config = {} config['prompt_key'] = st.sidebar.selectbox("Prompt Mode", list(dict_promptmode_to_prompt.keys())) config['ip'] = st.sidebar.text_input("Server IP", DEFAULT_CONFIG['ip']) config['port'] = st.sidebar.number_input("Port", min_value=1000, max_value=9999, value=DEFAULT_CONFIG['port_vllm']) # config['eos_word'] = st.sidebar.text_input("EOS Word", DEFAULT_CONFIG['eos_word']) # Image configuration st.sidebar.subheader("Image Configuration") config['min_pixels'] = st.sidebar.number_input("Min Pixels", value=DEFAULT_CONFIG['min_pixels']) config['max_pixels'] = st.sidebar.number_input("Max Pixels", value=DEFAULT_CONFIG['max_pixels']) return config def get_image_input(): """Get image input""" st.markdown("#### Image Input") input_mode = st.pills(label="Select input method", options=["Upload Image", "Enter Image URL/Path", "Select Test Image"], key="input_mode", label_visibility="collapsed") if input_mode == "Upload Image": # File uploader uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file: tmp_file.write(uploaded_file.getvalue()) return tmp_file.name elif input_mode == 'Enter Image URL/Path': # URL input img_url_input = st.text_input("Enter Image URL/Path") return img_url_input elif input_mode == 'Select Test Image': # Test image selection test_images = [] test_dir = DEFAULT_CONFIG['test_images_dir'] if os.path.exists(test_dir): test_images = [os.path.join(test_dir, name) for name in os.listdir(test_dir)] img_url_test = st.selectbox("Select Test Image", [""] + test_images) return img_url_test else: raise ValueError(f"Invalid input mode: {input_mode}") return None def process_and_display_results(output: str, image: Image.Image, config: dict): """Process and display inference results""" prompt, response = output['prompt'], output['response'] try: col1, col2 = st.columns(2) # st.markdown('---') cells = json.loads(response) # image = Image.open(img_url) # Post-processing cells = post_process_cells( image, cells, image.width, image.height, min_pixels=config['min_pixels'], max_pixels=config['max_pixels'] ) # Calculate input dimensions input_width, input_height = get_input_dimensions( image, min_pixels=config['min_pixels'], max_pixels=config['max_pixels'] ) st.markdown('---') st.write(f'Input Dimensions: {input_width} x {input_height}') # st.write(f'Prompt: {prompt}') # st.markdown(f'模型原始输出: {result}', unsafe_allow_html=True) # st.write('模型原始输出:') # st.write(response) # st.write('后处理结果:', str(cells)) st.text_area('Original Model Output', response, height=200) st.text_area('Post-processed Result', str(cells), height=200) # 显示结果 # st.title("Layout推理结果") with col1: # st.markdown("##### 可视化结果") new_image = draw_layout_on_image( image, cells, resized_height=None, resized_width=None, # text_key='text', fill_bbox=True, draw_bbox=True ) st.markdown('##### Visualization Result') st.image(new_image, width=new_image.width) # st.write(f"尺寸: {new_image.width} x {new_image.height}") with col2: # st.markdown("##### Markdown格式") md_code = layoutjson2md(image, cells, text_key='text') # md_code = fix_streamlit_formula(md_code) st.markdown('##### Markdown Format') st.markdown(md_code, unsafe_allow_html=True) except json.JSONDecodeError: st.error("Model output is not a valid JSON format") except Exception as e: st.error(f"Error processing results: {e}") # ==================== Main Application ==================== def main(): """Main application function""" st.set_page_config(page_title="Layout Inference Tool", layout="wide") st.title("🔍 Layout Inference Tool") # Configuration config = create_config_sidebar() prompt = dict_promptmode_to_prompt[config['prompt_key']] st.sidebar.info(f"Current Prompt: {prompt}") # Image input img_url = get_image_input() start_button = st.button('🚀 Start Inference', type="primary") if img_url is not None and img_url.strip() != "": try: # processed_image = read_image_v2(img_url) origin_image = read_image_v2(img_url) st.write(f"Original Dimensions: {origin_image.width} x {origin_image.height}") # processed_image = get_image_by_fitz_doc(origin_image, target_dpi=200) processed_image = origin_image except Exception as e: st.error(f"Failed to read image: {e}") return else: st.info("Please enter an image URL/path or upload an image") return output = None # Inference button if start_button: with st.spinner(f"Inferring... Server: {config['ip']}:{config['port']}"): response = inference_with_vllm( processed_image, prompt, config['ip'], config['port'], # config['min_pixels'], config['max_pixels'] ) output = { 'prompt': prompt, 'response': response, } else: st.image(processed_image, width=500) # Process results if output: process_and_display_results(output, processed_image, config) if __name__ == "__main__": main()