""" Layout Inference Web Application with Gradio A Gradio-based layout inference tool that supports image uploads and multiple backend inference engines. It adopts a reference-style interface design while preserving the original inference logic. """ import gradio as gr import json import os import io import tempfile import base64 import zipfile import uuid import re from pathlib import Path from PIL import Image import requests # Local tool imports from dots_ocr.utils import dict_promptmode_to_prompt from dots_ocr.utils.consts import MIN_PIXELS, MAX_PIXELS from dots_ocr.utils.demo_utils.display import read_image from dots_ocr.utils.doc_utils import load_images_from_pdf # Add DotsOCRParser import from dots_ocr.parser import DotsOCRParser # ==================== Configuration ==================== DEFAULT_CONFIG = { 'ip': "127.0.0.1", 'port_vllm': 8000, 'min_pixels': MIN_PIXELS, 'max_pixels': MAX_PIXELS, 'test_images_dir': "./assets/showcase_origin", } # ==================== Global Variables ==================== # Store current configuration current_config = DEFAULT_CONFIG.copy() # Create DotsOCRParser instance dots_parser = DotsOCRParser( ip=DEFAULT_CONFIG['ip'], port=DEFAULT_CONFIG['port_vllm'], dpi=200, min_pixels=DEFAULT_CONFIG['min_pixels'], max_pixels=DEFAULT_CONFIG['max_pixels'] ) # Store processing results processing_results = { 'original_image': None, 'processed_image': None, 'layout_result': None, 'markdown_content': None, 'cells_data': None, 'temp_dir': None, 'session_id': None, 'result_paths': None, 'pdf_results': None # Store multi-page PDF results } # PDF caching mechanism pdf_cache = { "images": [], "current_page": 0, "total_pages": 0, "file_type": None, # 'image' or 'pdf' "is_parsed": False, # Whether it has been parsed "results": [] # Store parsing results for each page } def read_image_v2(img): """Reads an image, supports URLs and local paths""" if isinstance(img, str) and img.startswith(("http://", "https://")): with requests.get(img, stream=True) as response: response.raise_for_status() img = Image.open(io.BytesIO(response.content)) elif isinstance(img, str): img, _, _ = read_image(img, use_native=True) elif isinstance(img, Image.Image): pass else: raise ValueError(f"Invalid image type: {type(img)}") return img def load_file_for_preview(file_path): """Loads a file for preview, supports PDF and image files""" global pdf_cache if not file_path or not os.path.exists(file_path): return None, "
0 / 0
" file_ext = os.path.splitext(file_path)[1].lower() if file_ext == '.pdf': try: # Read PDF and convert to images (one image per page) pages = load_images_from_pdf(file_path) pdf_cache["file_type"] = "pdf" except Exception as e: return None, f"
PDF loading failed: {str(e)}
" elif file_ext in ['.jpg', '.jpeg', '.png']: # For image files, read directly as a single-page image try: image = Image.open(file_path) pages = [image] pdf_cache["file_type"] = "image" except Exception as e: return None, f"
Image loading failed: {str(e)}
" else: return None, "
Unsupported file format
" pdf_cache["images"] = pages pdf_cache["current_page"] = 0 pdf_cache["total_pages"] = len(pages) pdf_cache["is_parsed"] = False pdf_cache["results"] = [] return pages[0], f"
1 / {len(pages)}
" def turn_page(direction): """Page turning function""" global pdf_cache if not pdf_cache["images"]: return None, "
0 / 0
", "", "" if direction == "prev": pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) elif direction == "next": pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1) index = pdf_cache["current_page"] current_image = pdf_cache["images"][index] # Use the original image by default page_info = f"
{index + 1} / {pdf_cache['total_pages']}
" # If parsed, display the results for the current page current_md = "" current_md_raw = "" current_json = "" if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]): result = pdf_cache["results"][index] if 'md_content' in result: # Get the raw markdown content current_md_raw = result['md_content'] # Process the content after LaTeX rendering current_md = result['md_content'] if result['md_content'] else "" if 'cells_data' in result: try: current_json = json.dumps(result['cells_data'], ensure_ascii=False, indent=2) except: current_json = str(result.get('cells_data', '')) # Use the image with layout boxes (if available) if 'layout_image' in result and result['layout_image']: current_image = result['layout_image'] return current_image, page_info, current_json def get_test_images(): """Gets the list of test images""" test_images = [] test_dir = current_config['test_images_dir'] if os.path.exists(test_dir): test_images = [os.path.join(test_dir, name) for name in os.listdir(test_dir) if name.lower().endswith(('.png', '.jpg', '.jpeg', '.pdf'))] return test_images def convert_image_to_base64(image): """Converts a PIL image to base64 encoding""" buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return f"data:image/png;base64,{img_str}" def create_temp_session_dir(): """Creates a unique temporary directory for each processing request""" session_id = uuid.uuid4().hex[:8] temp_dir = os.path.join(tempfile.gettempdir(), f"dots_ocr_demo_{session_id}") os.makedirs(temp_dir, exist_ok=True) return temp_dir, session_id def parse_image_with_high_level_api(parser, image, prompt_mode, fitz_preprocess=False): """ Processes using the high-level API parse_image from DotsOCRParser """ # Create a temporary session directory temp_dir, session_id = create_temp_session_dir() try: # Save the PIL Image as a temporary file temp_image_path = os.path.join(temp_dir, f"input_{session_id}.png") image.save(temp_image_path, "PNG") # Use the high-level API parse_image filename = f"demo_{session_id}" results = parser.parse_image( # input_path=temp_image_path, input_path=image, filename=filename, prompt_mode=prompt_mode, save_dir=temp_dir, fitz_preprocess=fitz_preprocess ) # Parse the results if not results: raise ValueError("No results returned from parser") result = results[0] # parse_image returns a list with a single result # Read the result files layout_image = None cells_data = None md_content = None raw_response = None filtered = False # Read the layout image if 'layout_image_path' in result and os.path.exists(result['layout_image_path']): layout_image = Image.open(result['layout_image_path']) # Read the JSON data if 'layout_info_path' in result and os.path.exists(result['layout_info_path']): with open(result['layout_info_path'], 'r', encoding='utf-8') as f: cells_data = json.load(f) # Read the Markdown content if 'md_content_path' in result and os.path.exists(result['md_content_path']): with open(result['md_content_path'], 'r', encoding='utf-8') as f: md_content = f.read() # Check for the raw response file (when JSON parsing fails) if 'filtered' in result: filtered = result['filtered'] return { 'layout_image': layout_image, 'cells_data': cells_data, 'md_content': md_content, 'filtered': filtered, 'temp_dir': temp_dir, 'session_id': session_id, 'result_paths': result, 'input_width': result['input_width'], 'input_height': result['input_height'], } except Exception as e: # Clean up the temporary directory on error import shutil if os.path.exists(temp_dir): shutil.rmtree(temp_dir, ignore_errors=True) raise e def parse_pdf_with_high_level_api(parser, pdf_path, prompt_mode): """ Processes using the high-level API parse_pdf from DotsOCRParser """ # Create a temporary session directory temp_dir, session_id = create_temp_session_dir() try: # Use the high-level API parse_pdf filename = f"demo_{session_id}" results = parser.parse_pdf( input_path=pdf_path, filename=filename, prompt_mode=prompt_mode, save_dir=temp_dir ) # Parse the results if not results: raise ValueError("No results returned from parser") # Handle multi-page results parsed_results = [] all_md_content = [] all_cells_data = [] for i, result in enumerate(results): page_result = { 'page_no': result.get('page_no', i), 'layout_image': None, 'cells_data': None, 'md_content': None, 'filtered': False } # Read the layout image if 'layout_image_path' in result and os.path.exists(result['layout_image_path']): page_result['layout_image'] = Image.open(result['layout_image_path']) # Read the JSON data if 'layout_info_path' in result and os.path.exists(result['layout_info_path']): with open(result['layout_info_path'], 'r', encoding='utf-8') as f: page_result['cells_data'] = json.load(f) all_cells_data.extend(page_result['cells_data']) # Read the Markdown content if 'md_content_path' in result and os.path.exists(result['md_content_path']): with open(result['md_content_path'], 'r', encoding='utf-8') as f: page_content = f.read() page_result['md_content'] = page_content all_md_content.append(page_content) # Check for the raw response file (when JSON parsing fails) page_result['filtered'] = False if 'filtered' in page_result: page_result['filtered'] = page_result['filtered'] parsed_results.append(page_result) # Merge the content of all pages combined_md = "\n\n---\n\n".join(all_md_content) if all_md_content else "" return { 'parsed_results': parsed_results, 'combined_md_content': combined_md, 'combined_cells_data': all_cells_data, 'temp_dir': temp_dir, 'session_id': session_id, 'total_pages': len(results) } except Exception as e: # Clean up the temporary directory on error import shutil if os.path.exists(temp_dir): shutil.rmtree(temp_dir, ignore_errors=True) raise e # ==================== Core Processing Function ==================== def process_image_inference(test_image_input, file_input, prompt_mode, server_ip, server_port, min_pixels, max_pixels, fitz_preprocess=False ): """Core function to handle image/PDF inference""" global current_config, processing_results, dots_parser, pdf_cache # First, clean up previous processing results to avoid confusion with the download button if processing_results.get('temp_dir') and os.path.exists(processing_results['temp_dir']): import shutil try: shutil.rmtree(processing_results['temp_dir'], ignore_errors=True) except Exception as e: print(f"Failed to clean up previous temporary directory: {e}") # Reset processing results processing_results = { 'original_image': None, 'processed_image': None, 'layout_result': None, 'markdown_content': None, 'cells_data': None, 'temp_dir': None, 'session_id': None, 'result_paths': None, 'pdf_results': None } # Update configuration current_config.update({ 'ip': server_ip, 'port_vllm': server_port, 'min_pixels': min_pixels, 'max_pixels': max_pixels }) # Update parser configuration dots_parser.ip = server_ip dots_parser.port = server_port dots_parser.min_pixels = min_pixels dots_parser.max_pixels = max_pixels # Determine the input source input_file_path = None image = None # Prioritize file input (supports PDF) if file_input is not None: input_file_path = file_input file_ext = os.path.splitext(input_file_path)[1].lower() if file_ext == '.pdf': # PDF file processing try: return process_pdf_file(input_file_path, prompt_mode) except Exception as e: return None, f"PDF processing failed: {e}", "", "", gr.update(value=None), None, "" elif file_ext in ['.jpg', '.jpeg', '.png']: # Image file processing try: image = Image.open(input_file_path) except Exception as e: return None, f"Failed to read image file: {e}", "", "", gr.update(value=None), None, "" # If no file input, check the test image input if image is None: if test_image_input and test_image_input != "": file_ext = os.path.splitext(test_image_input)[1].lower() if file_ext == '.pdf': return process_pdf_file(test_image_input, prompt_mode) else: try: image = read_image_v2(test_image_input) except Exception as e: return None, f"Failed to read test image: {e}", "", "", gr.update(value=None), gr.update(value=None), None, "" if image is None: return None, "Please upload image/PDF file or select test image", "", "", gr.update(value=None), None, "" try: # Clear PDF cache (for image processing) pdf_cache["images"] = [] pdf_cache["current_page"] = 0 pdf_cache["total_pages"] = 0 pdf_cache["is_parsed"] = False pdf_cache["results"] = [] # Process using the high-level API of DotsOCRParser original_image = image parse_result = parse_image_with_high_level_api(dots_parser, image, prompt_mode, fitz_preprocess) # Extract parsing results layout_image = parse_result['layout_image'] cells_data = parse_result['cells_data'] md_content = parse_result['md_content'] filtered = parse_result['filtered'] # Handle parsing failure case if filtered: # JSON parsing failed, only text content is available info_text = f""" **Image Information:** - Original Size: {original_image.width} x {original_image.height} - Processing: JSON parsing failed, using cleaned text output - Server: {current_config['ip']}:{current_config['port_vllm']} - Session ID: {parse_result['session_id']} """ # Store results processing_results.update({ 'original_image': original_image, 'processed_image': None, 'layout_result': None, 'markdown_content': md_content, 'cells_data': None, 'temp_dir': parse_result['temp_dir'], 'session_id': parse_result['session_id'], 'result_paths': parse_result['result_paths'] }) return ( original_image, # No layout image info_text, md_content, md_content, # Display raw markdown text gr.update(visible=False), # Hide download button None, # Page info "" # Current page JSON output ) # JSON parsing successful case # Save the raw markdown content (before LaTeX processing) md_content_raw = md_content or "No markdown content generated" # Store results processing_results.update({ 'original_image': original_image, 'processed_image': None, # High-level API does not return processed_image 'layout_result': layout_image, 'markdown_content': md_content, 'cells_data': cells_data, 'temp_dir': parse_result['temp_dir'], 'session_id': parse_result['session_id'], 'result_paths': parse_result['result_paths'] }) # Prepare display information num_elements = len(cells_data) if cells_data else 0 info_text = f""" **Image Information:** - Original Size: {original_image.width} x {original_image.height} - Model Input Size: {parse_result['input_width']} x {parse_result['input_height']} - Server: {current_config['ip']}:{current_config['port_vllm']} - Detected {num_elements} layout elements - Session ID: {parse_result['session_id']} """ # Current page JSON output current_json = "" if cells_data: try: current_json = json.dumps(cells_data, ensure_ascii=False, indent=2) except: current_json = str(cells_data) # Create the download ZIP file download_zip_path = None if parse_result['temp_dir']: download_zip_path = os.path.join(parse_result['temp_dir'], f"layout_results_{parse_result['session_id']}.zip") try: with zipfile.ZipFile(download_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(parse_result['temp_dir']): for file in files: if file.endswith('.zip'): continue file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, parse_result['temp_dir']) zipf.write(file_path, arcname) except Exception as e: print(f"Failed to create download ZIP: {e}") download_zip_path = None return ( layout_image, info_text, md_content or "No markdown content generated", md_content_raw, # Raw markdown text gr.update(value=download_zip_path, visible=True) if download_zip_path else gr.update(visible=False), # Set the download file None, # Page info (not displayed for image processing) current_json # Current page JSON ) except Exception as e: return None, f"Error during processing: {e}", "", "", gr.update(value=None), None, "" def process_pdf_file(pdf_path, prompt_mode): """Dedicated function for processing PDF files""" global pdf_cache, processing_results, dots_parser try: # First, load the PDF for preview preview_image, page_info = load_file_for_preview(pdf_path) # Parse the PDF using DotsOCRParser pdf_result = parse_pdf_with_high_level_api(dots_parser, pdf_path, prompt_mode) # Update the PDF cache pdf_cache["is_parsed"] = True pdf_cache["results"] = pdf_result['parsed_results'] # Handle LaTeX table rendering combined_md = pdf_result['combined_md_content'] combined_md_raw = combined_md or "No markdown content generated" # Save the raw content # Store results processing_results.update({ 'original_image': None, 'processed_image': None, 'layout_result': None, 'markdown_content': combined_md, 'cells_data': pdf_result['combined_cells_data'], 'temp_dir': pdf_result['temp_dir'], 'session_id': pdf_result['session_id'], 'result_paths': None, 'pdf_results': pdf_result['parsed_results'] }) # Prepare display information total_elements = len(pdf_result['combined_cells_data']) info_text = f""" **PDF Information:** - Total Pages: {pdf_result['total_pages']} - Server: {current_config['ip']}:{current_config['port_vllm']} - Total Detected Elements: {total_elements} - Session ID: {pdf_result['session_id']} """ # Content of the current page (first page) current_page_md = "" current_page_md_raw = "" current_page_json = "" current_page_layout_image = preview_image # Use the original preview image by default if pdf_cache["results"] and len(pdf_cache["results"]) > 0: current_result = pdf_cache["results"][0] if current_result['md_content']: # Raw markdown content current_page_md_raw = current_result['md_content'] # Process the content after LaTeX rendering current_page_md = current_result['md_content'] if current_result['cells_data']: try: current_page_json = json.dumps(current_result['cells_data'], ensure_ascii=False, indent=2) except: current_page_json = str(current_result['cells_data']) # Use the image with layout boxes (if available) if 'layout_image' in current_result and current_result['layout_image']: current_page_layout_image = current_result['layout_image'] # Create the download ZIP file download_zip_path = None if pdf_result['temp_dir']: download_zip_path = os.path.join(pdf_result['temp_dir'], f"layout_results_{pdf_result['session_id']}.zip") try: with zipfile.ZipFile(download_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(pdf_result['temp_dir']): for file in files: if file.endswith('.zip'): continue file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, pdf_result['temp_dir']) zipf.write(file_path, arcname) except Exception as e: print(f"Failed to create download ZIP: {e}") download_zip_path = None return ( current_page_layout_image, # Use the image with layout boxes info_text, combined_md or "No markdown content generated", # Display the markdown for the entire PDF combined_md_raw or "No markdown content generated", # Display the raw markdown for the entire PDF gr.update(value=download_zip_path, visible=True) if download_zip_path else gr.update(visible=False), # Set the download file page_info, current_page_json ) except Exception as e: # Reset the PDF cache pdf_cache["images"] = [] pdf_cache["current_page"] = 0 pdf_cache["total_pages"] = 0 pdf_cache["is_parsed"] = False pdf_cache["results"] = [] raise e def clear_all_data(): """Clears all data""" global processing_results, pdf_cache # Clean up the temporary directory if processing_results.get('temp_dir') and os.path.exists(processing_results['temp_dir']): import shutil try: shutil.rmtree(processing_results['temp_dir'], ignore_errors=True) except Exception as e: print(f"Failed to clean up temporary directory: {e}") # Reset processing results processing_results = { 'original_image': None, 'processed_image': None, 'layout_result': None, 'markdown_content': None, 'cells_data': None, 'temp_dir': None, 'session_id': None, 'result_paths': None, 'pdf_results': None } # Reset the PDF cache pdf_cache = { "images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": [] } return ( None, # Clear file input "", # Clear test image selection None, # Clear result image "Waiting for processing results...", # Reset info display "## Waiting for processing results...", # Reset Markdown display "🕐 Waiting for parsing result...", # Clear raw Markdown text gr.update(visible=False), # Hide download button "
0 / 0
", # Reset page info "🕐 Waiting for parsing result..." # Clear current page JSON ) def update_prompt_display(prompt_mode): """Updates the prompt display content""" return dict_promptmode_to_prompt[prompt_mode] # ==================== Gradio Interface ==================== def create_gradio_interface(): """Creates the Gradio interface""" # CSS styles, matching the reference style css = """ #parse_button { background: #FF576D !important; /* !important 确保覆盖主题默认样式 */ border-color: #FF576D !important; } /* 鼠标悬停时的颜色 */ #parse_button:hover { background: #F72C49 !important; border-color: #F72C49 !important; } #page_info_html { display: flex; align-items: center; justify-content: center; height: 100%; margin: 0 12px; } #page_info_box { padding: 8px 20px; font-size: 16px; border: 1px solid #bbb; border-radius: 8px; background-color: #f8f8f8; text-align: center; min-width: 80px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); } #markdown_output { min-height: 800px; overflow: auto; } footer { visibility: hidden; } #info_box { padding: 10px; background-color: #f8f9fa; border-radius: 8px; border: 1px solid #dee2e6; margin: 10px 0; font-size: 14px; } #result_image { border-radius: 8px; } #markdown_tabs { height: 100%; } """ with gr.Blocks(theme="ocean", css=css, title='dots.ocr') as demo: # Title gr.HTML("""

🔍 dots.ocr

Supports image/PDF layout analysis and structured output
""") with gr.Row(): # Left side: Input and Configuration with gr.Column(scale=1, elem_id="left-panel"): gr.Markdown("### 📥 Upload & Select") file_input = gr.File( label="Upload PDF/Image", type="filepath", file_types=[".pdf", ".jpg", ".jpeg", ".png"], ) test_images = get_test_images() test_image_input = gr.Dropdown( label="Or Select an Example", choices=[""] + test_images, value="", ) gr.Markdown("### ⚙️ Prompt & Actions") prompt_mode = gr.Dropdown( label="Select Prompt", choices=["prompt_layout_all_en", "prompt_layout_only_en", "prompt_ocr"], value="prompt_layout_all_en", show_label=True ) # Display current prompt content prompt_display = gr.Textbox( label="Current Prompt Content", value=dict_promptmode_to_prompt[list(dict_promptmode_to_prompt.keys())[0]], lines=4, max_lines=8, interactive=False, show_copy_button=True ) with gr.Row(): process_btn = gr.Button("🔍 Parse", variant="primary", scale=2, elem_id="parse_button") clear_btn = gr.Button("🗑️ Clear", variant="secondary", scale=1) with gr.Accordion("🛠️ Advanced Configuration", open=False): fitz_preprocess = gr.Checkbox( label="Enable fitz_preprocess for images", value=True, info="Processes image via a PDF-like pipeline (image->pdf->200dpi image). Recommended if your image DPI is low." ) with gr.Row(): server_ip = gr.Textbox(label="Server IP", value=DEFAULT_CONFIG['ip']) server_port = gr.Number(label="Port", value=DEFAULT_CONFIG['port_vllm'], precision=0) with gr.Row(): min_pixels = gr.Number(label="Min Pixels", value=DEFAULT_CONFIG['min_pixels'], precision=0) max_pixels = gr.Number(label="Max Pixels", value=DEFAULT_CONFIG['max_pixels'], precision=0) # Right side: Result Display with gr.Column(scale=6, variant="compact"): with gr.Row(): # Result Image with gr.Column(scale=3): gr.Markdown("### 👁️ File Preview") result_image = gr.Image( label="Layout Preview", visible=True, height=800, show_label=False ) # Page navigation (shown during PDF preview) with gr.Row(): prev_btn = gr.Button("⬅ Previous", size="sm") page_info = gr.HTML( value="
0 / 0
", elem_id="page_info_html" ) next_btn = gr.Button("Next ➡", size="sm") # Info Display info_display = gr.Markdown( "Waiting for processing results...", elem_id="info_box" ) # Markdown Result with gr.Column(scale=3): gr.Markdown("### ✔️ Result Display") with gr.Tabs(elem_id="markdown_tabs"): with gr.TabItem("Markdown Render Preview"): md_output = gr.Markdown( "## Please click the parse button to parse or select for single-task recognition...", label="Markdown Preview", max_height=600, latex_delimiters=[ {"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False}, ], show_copy_button=False, elem_id="markdown_output" ) with gr.TabItem("Markdown Raw Text"): md_raw_output = gr.Textbox( value="🕐 Waiting for parsing result...", label="Markdown Raw Text", max_lines=100, lines=38, show_copy_button=True, elem_id="markdown_output", show_label=False ) with gr.TabItem("Current Page JSON"): current_page_json = gr.Textbox( value="🕐 Waiting for parsing result...", label="Current Page JSON", max_lines=100, lines=38, show_copy_button=True, elem_id="markdown_output", show_label=False ) # Download Button with gr.Row(): download_btn = gr.DownloadButton( "⬇️ Download Results", visible=False ) # When the prompt mode changes, update the display content prompt_mode.change( fn=update_prompt_display, inputs=prompt_mode, outputs=prompt_display, show_progress=False ) # Show preview on file upload file_input.upload( fn=load_file_for_preview, inputs=file_input, outputs=[result_image, page_info], show_progress=False ) # Page navigation prev_btn.click( fn=lambda: turn_page("prev"), outputs=[result_image, page_info, current_page_json], show_progress=False ) next_btn.click( fn=lambda: turn_page("next"), outputs=[result_image, page_info, current_page_json], show_progress=False ) process_btn.click( fn=process_image_inference, inputs=[ test_image_input, file_input, prompt_mode, server_ip, server_port, min_pixels, max_pixels, fitz_preprocess ], outputs=[ result_image, info_display, md_output, md_raw_output, download_btn, page_info, current_page_json ], show_progress=True ) clear_btn.click( fn=clear_all_data, outputs=[ file_input, test_image_input, result_image, info_display, md_output, md_raw_output, download_btn, page_info, current_page_json ], show_progress=False ) return demo # ==================== Main Program ==================== if __name__ == "__main__": demo = create_gradio_interface() demo.queue().launch( server_name="0.0.0.0", server_port=7860, debug=True )