"""
Layout Inference Web Application with Gradio
A Gradio-based layout inference tool that supports image uploads and multiple backend inference engines.
It adopts a reference-style interface design while preserving the original inference logic.
"""
import gradio as gr
import json
import os
import io
import tempfile
import base64
import zipfile
import uuid
import re
from pathlib import Path
from PIL import Image
import requests
# Local tool imports
from dots_ocr.utils import dict_promptmode_to_prompt
from dots_ocr.utils.consts import MIN_PIXELS, MAX_PIXELS
from dots_ocr.utils.demo_utils.display import read_image
from dots_ocr.utils.doc_utils import load_images_from_pdf
# Add DotsOCRParser import
from dots_ocr.parser import DotsOCRParser
# ==================== Configuration ====================
DEFAULT_CONFIG = {
'ip': "127.0.0.1",
'port_vllm': 8000,
'min_pixels': MIN_PIXELS,
'max_pixels': MAX_PIXELS,
'test_images_dir': "./assets/showcase_origin",
}
# ==================== Global Variables ====================
# Store current configuration
current_config = DEFAULT_CONFIG.copy()
# Create DotsOCRParser instance
dots_parser = DotsOCRParser(
ip=DEFAULT_CONFIG['ip'],
port=DEFAULT_CONFIG['port_vllm'],
dpi=200,
min_pixels=DEFAULT_CONFIG['min_pixels'],
max_pixels=DEFAULT_CONFIG['max_pixels']
)
# Store processing results
processing_results = {
'original_image': None,
'processed_image': None,
'layout_result': None,
'markdown_content': None,
'cells_data': None,
'temp_dir': None,
'session_id': None,
'result_paths': None,
'pdf_results': None # Store multi-page PDF results
}
# PDF caching mechanism
pdf_cache = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None, # 'image' or 'pdf'
"is_parsed": False, # Whether it has been parsed
"results": [] # Store parsing results for each page
}
def read_image_v2(img):
"""Reads an image, supports URLs and local paths"""
if isinstance(img, str) and img.startswith(("http://", "https://")):
with requests.get(img, stream=True) as response:
response.raise_for_status()
img = Image.open(io.BytesIO(response.content))
elif isinstance(img, str):
img, _, _ = read_image(img, use_native=True)
elif isinstance(img, Image.Image):
pass
else:
raise ValueError(f"Invalid image type: {type(img)}")
return img
def load_file_for_preview(file_path):
"""Loads a file for preview, supports PDF and image files"""
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "
0 / 0
"
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
try:
# Read PDF and convert to images (one image per page)
pages = load_images_from_pdf(file_path)
pdf_cache["file_type"] = "pdf"
except Exception as e:
return None, f"PDF loading failed: {str(e)}
"
elif file_ext in ['.jpg', '.jpeg', '.png']:
# For image files, read directly as a single-page image
try:
image = Image.open(file_path)
pages = [image]
pdf_cache["file_type"] = "image"
except Exception as e:
return None, f"Image loading failed: {str(e)}
"
else:
return None, "Unsupported file format
"
pdf_cache["images"] = pages
pdf_cache["current_page"] = 0
pdf_cache["total_pages"] = len(pages)
pdf_cache["is_parsed"] = False
pdf_cache["results"] = []
return pages[0], f"1 / {len(pages)}
"
def turn_page(direction):
"""Page turning function"""
global pdf_cache
if not pdf_cache["images"]:
return None, "0 / 0
", "", ""
if direction == "prev":
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
elif direction == "next":
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
index = pdf_cache["current_page"]
current_image = pdf_cache["images"][index] # Use the original image by default
page_info = f"{index + 1} / {pdf_cache['total_pages']}
"
# If parsed, display the results for the current page
current_md = ""
current_md_raw = ""
current_json = ""
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
result = pdf_cache["results"][index]
if 'md_content' in result:
# Get the raw markdown content
current_md_raw = result['md_content']
# Process the content after LaTeX rendering
current_md = result['md_content'] if result['md_content'] else ""
if 'cells_data' in result:
try:
current_json = json.dumps(result['cells_data'], ensure_ascii=False, indent=2)
except:
current_json = str(result.get('cells_data', ''))
# Use the image with layout boxes (if available)
if 'layout_image' in result and result['layout_image']:
current_image = result['layout_image']
return current_image, page_info, current_json
def get_test_images():
"""Gets the list of test images"""
test_images = []
test_dir = current_config['test_images_dir']
if os.path.exists(test_dir):
test_images = [os.path.join(test_dir, name) for name in os.listdir(test_dir)
if name.lower().endswith(('.png', '.jpg', '.jpeg', '.pdf'))]
return test_images
def convert_image_to_base64(image):
"""Converts a PIL image to base64 encoding"""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def create_temp_session_dir():
"""Creates a unique temporary directory for each processing request"""
session_id = uuid.uuid4().hex[:8]
temp_dir = os.path.join(tempfile.gettempdir(), f"dots_ocr_demo_{session_id}")
os.makedirs(temp_dir, exist_ok=True)
return temp_dir, session_id
def parse_image_with_high_level_api(parser, image, prompt_mode, fitz_preprocess=False):
"""
Processes using the high-level API parse_image from DotsOCRParser
"""
# Create a temporary session directory
temp_dir, session_id = create_temp_session_dir()
try:
# Save the PIL Image as a temporary file
temp_image_path = os.path.join(temp_dir, f"input_{session_id}.png")
image.save(temp_image_path, "PNG")
# Use the high-level API parse_image
filename = f"demo_{session_id}"
results = parser.parse_image(
# input_path=temp_image_path,
input_path=image,
filename=filename,
prompt_mode=prompt_mode,
save_dir=temp_dir,
fitz_preprocess=fitz_preprocess
)
# Parse the results
if not results:
raise ValueError("No results returned from parser")
result = results[0] # parse_image returns a list with a single result
# Read the result files
layout_image = None
cells_data = None
md_content = None
raw_response = None
filtered = False
# Read the layout image
if 'layout_image_path' in result and os.path.exists(result['layout_image_path']):
layout_image = Image.open(result['layout_image_path'])
# Read the JSON data
if 'layout_info_path' in result and os.path.exists(result['layout_info_path']):
with open(result['layout_info_path'], 'r', encoding='utf-8') as f:
cells_data = json.load(f)
# Read the Markdown content
if 'md_content_path' in result and os.path.exists(result['md_content_path']):
with open(result['md_content_path'], 'r', encoding='utf-8') as f:
md_content = f.read()
# Check for the raw response file (when JSON parsing fails)
if 'filtered' in result:
filtered = result['filtered']
return {
'layout_image': layout_image,
'cells_data': cells_data,
'md_content': md_content,
'filtered': filtered,
'temp_dir': temp_dir,
'session_id': session_id,
'result_paths': result,
'input_width': result['input_width'],
'input_height': result['input_height'],
}
except Exception as e:
# Clean up the temporary directory on error
import shutil
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
def parse_pdf_with_high_level_api(parser, pdf_path, prompt_mode):
"""
Processes using the high-level API parse_pdf from DotsOCRParser
"""
# Create a temporary session directory
temp_dir, session_id = create_temp_session_dir()
try:
# Use the high-level API parse_pdf
filename = f"demo_{session_id}"
results = parser.parse_pdf(
input_path=pdf_path,
filename=filename,
prompt_mode=prompt_mode,
save_dir=temp_dir
)
# Parse the results
if not results:
raise ValueError("No results returned from parser")
# Handle multi-page results
parsed_results = []
all_md_content = []
all_cells_data = []
for i, result in enumerate(results):
page_result = {
'page_no': result.get('page_no', i),
'layout_image': None,
'cells_data': None,
'md_content': None,
'filtered': False
}
# Read the layout image
if 'layout_image_path' in result and os.path.exists(result['layout_image_path']):
page_result['layout_image'] = Image.open(result['layout_image_path'])
# Read the JSON data
if 'layout_info_path' in result and os.path.exists(result['layout_info_path']):
with open(result['layout_info_path'], 'r', encoding='utf-8') as f:
page_result['cells_data'] = json.load(f)
all_cells_data.extend(page_result['cells_data'])
# Read the Markdown content
if 'md_content_path' in result and os.path.exists(result['md_content_path']):
with open(result['md_content_path'], 'r', encoding='utf-8') as f:
page_content = f.read()
page_result['md_content'] = page_content
all_md_content.append(page_content)
# Check for the raw response file (when JSON parsing fails)
page_result['filtered'] = False
if 'filtered' in page_result:
page_result['filtered'] = page_result['filtered']
parsed_results.append(page_result)
# Merge the content of all pages
combined_md = "\n\n---\n\n".join(all_md_content) if all_md_content else ""
return {
'parsed_results': parsed_results,
'combined_md_content': combined_md,
'combined_cells_data': all_cells_data,
'temp_dir': temp_dir,
'session_id': session_id,
'total_pages': len(results)
}
except Exception as e:
# Clean up the temporary directory on error
import shutil
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
# ==================== Core Processing Function ====================
def process_image_inference(test_image_input, file_input,
prompt_mode, server_ip, server_port, min_pixels, max_pixels,
fitz_preprocess=False
):
"""Core function to handle image/PDF inference"""
global current_config, processing_results, dots_parser, pdf_cache
# First, clean up previous processing results to avoid confusion with the download button
if processing_results.get('temp_dir') and os.path.exists(processing_results['temp_dir']):
import shutil
try:
shutil.rmtree(processing_results['temp_dir'], ignore_errors=True)
except Exception as e:
print(f"Failed to clean up previous temporary directory: {e}")
# Reset processing results
processing_results = {
'original_image': None,
'processed_image': None,
'layout_result': None,
'markdown_content': None,
'cells_data': None,
'temp_dir': None,
'session_id': None,
'result_paths': None,
'pdf_results': None
}
# Update configuration
current_config.update({
'ip': server_ip,
'port_vllm': server_port,
'min_pixels': min_pixels,
'max_pixels': max_pixels
})
# Update parser configuration
dots_parser.ip = server_ip
dots_parser.port = server_port
dots_parser.min_pixels = min_pixels
dots_parser.max_pixels = max_pixels
# Determine the input source
input_file_path = None
image = None
# Prioritize file input (supports PDF)
if file_input is not None:
input_file_path = file_input
file_ext = os.path.splitext(input_file_path)[1].lower()
if file_ext == '.pdf':
# PDF file processing
try:
return process_pdf_file(input_file_path, prompt_mode)
except Exception as e:
return None, f"PDF processing failed: {e}", "", "", gr.update(value=None), None, ""
elif file_ext in ['.jpg', '.jpeg', '.png']:
# Image file processing
try:
image = Image.open(input_file_path)
except Exception as e:
return None, f"Failed to read image file: {e}", "", "", gr.update(value=None), None, ""
# If no file input, check the test image input
if image is None:
if test_image_input and test_image_input != "":
file_ext = os.path.splitext(test_image_input)[1].lower()
if file_ext == '.pdf':
return process_pdf_file(test_image_input, prompt_mode)
else:
try:
image = read_image_v2(test_image_input)
except Exception as e:
return None, f"Failed to read test image: {e}", "", "", gr.update(value=None), gr.update(value=None), None, ""
if image is None:
return None, "Please upload image/PDF file or select test image", "", "", gr.update(value=None), None, ""
try:
# Clear PDF cache (for image processing)
pdf_cache["images"] = []
pdf_cache["current_page"] = 0
pdf_cache["total_pages"] = 0
pdf_cache["is_parsed"] = False
pdf_cache["results"] = []
# Process using the high-level API of DotsOCRParser
original_image = image
parse_result = parse_image_with_high_level_api(dots_parser, image, prompt_mode, fitz_preprocess)
# Extract parsing results
layout_image = parse_result['layout_image']
cells_data = parse_result['cells_data']
md_content = parse_result['md_content']
filtered = parse_result['filtered']
# Handle parsing failure case
if filtered:
# JSON parsing failed, only text content is available
info_text = f"""
**Image Information:**
- Original Size: {original_image.width} x {original_image.height}
- Processing: JSON parsing failed, using cleaned text output
- Server: {current_config['ip']}:{current_config['port_vllm']}
- Session ID: {parse_result['session_id']}
"""
# Store results
processing_results.update({
'original_image': original_image,
'processed_image': None,
'layout_result': None,
'markdown_content': md_content,
'cells_data': None,
'temp_dir': parse_result['temp_dir'],
'session_id': parse_result['session_id'],
'result_paths': parse_result['result_paths']
})
return (
original_image, # No layout image
info_text,
md_content,
md_content, # Display raw markdown text
gr.update(visible=False), # Hide download button
None, # Page info
"" # Current page JSON output
)
# JSON parsing successful case
# Save the raw markdown content (before LaTeX processing)
md_content_raw = md_content or "No markdown content generated"
# Store results
processing_results.update({
'original_image': original_image,
'processed_image': None, # High-level API does not return processed_image
'layout_result': layout_image,
'markdown_content': md_content,
'cells_data': cells_data,
'temp_dir': parse_result['temp_dir'],
'session_id': parse_result['session_id'],
'result_paths': parse_result['result_paths']
})
# Prepare display information
num_elements = len(cells_data) if cells_data else 0
info_text = f"""
**Image Information:**
- Original Size: {original_image.width} x {original_image.height}
- Model Input Size: {parse_result['input_width']} x {parse_result['input_height']}
- Server: {current_config['ip']}:{current_config['port_vllm']}
- Detected {num_elements} layout elements
- Session ID: {parse_result['session_id']}
"""
# Current page JSON output
current_json = ""
if cells_data:
try:
current_json = json.dumps(cells_data, ensure_ascii=False, indent=2)
except:
current_json = str(cells_data)
# Create the download ZIP file
download_zip_path = None
if parse_result['temp_dir']:
download_zip_path = os.path.join(parse_result['temp_dir'], f"layout_results_{parse_result['session_id']}.zip")
try:
with zipfile.ZipFile(download_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(parse_result['temp_dir']):
for file in files:
if file.endswith('.zip'):
continue
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, parse_result['temp_dir'])
zipf.write(file_path, arcname)
except Exception as e:
print(f"Failed to create download ZIP: {e}")
download_zip_path = None
return (
layout_image,
info_text,
md_content or "No markdown content generated",
md_content_raw, # Raw markdown text
gr.update(value=download_zip_path, visible=True) if download_zip_path else gr.update(visible=False), # Set the download file
None, # Page info (not displayed for image processing)
current_json # Current page JSON
)
except Exception as e:
return None, f"Error during processing: {e}", "", "", gr.update(value=None), None, ""
def process_pdf_file(pdf_path, prompt_mode):
"""Dedicated function for processing PDF files"""
global pdf_cache, processing_results, dots_parser
try:
# First, load the PDF for preview
preview_image, page_info = load_file_for_preview(pdf_path)
# Parse the PDF using DotsOCRParser
pdf_result = parse_pdf_with_high_level_api(dots_parser, pdf_path, prompt_mode)
# Update the PDF cache
pdf_cache["is_parsed"] = True
pdf_cache["results"] = pdf_result['parsed_results']
# Handle LaTeX table rendering
combined_md = pdf_result['combined_md_content']
combined_md_raw = combined_md or "No markdown content generated" # Save the raw content
# Store results
processing_results.update({
'original_image': None,
'processed_image': None,
'layout_result': None,
'markdown_content': combined_md,
'cells_data': pdf_result['combined_cells_data'],
'temp_dir': pdf_result['temp_dir'],
'session_id': pdf_result['session_id'],
'result_paths': None,
'pdf_results': pdf_result['parsed_results']
})
# Prepare display information
total_elements = len(pdf_result['combined_cells_data'])
info_text = f"""
**PDF Information:**
- Total Pages: {pdf_result['total_pages']}
- Server: {current_config['ip']}:{current_config['port_vllm']}
- Total Detected Elements: {total_elements}
- Session ID: {pdf_result['session_id']}
"""
# Content of the current page (first page)
current_page_md = ""
current_page_md_raw = ""
current_page_json = ""
current_page_layout_image = preview_image # Use the original preview image by default
if pdf_cache["results"] and len(pdf_cache["results"]) > 0:
current_result = pdf_cache["results"][0]
if current_result['md_content']:
# Raw markdown content
current_page_md_raw = current_result['md_content']
# Process the content after LaTeX rendering
current_page_md = current_result['md_content']
if current_result['cells_data']:
try:
current_page_json = json.dumps(current_result['cells_data'], ensure_ascii=False, indent=2)
except:
current_page_json = str(current_result['cells_data'])
# Use the image with layout boxes (if available)
if 'layout_image' in current_result and current_result['layout_image']:
current_page_layout_image = current_result['layout_image']
# Create the download ZIP file
download_zip_path = None
if pdf_result['temp_dir']:
download_zip_path = os.path.join(pdf_result['temp_dir'], f"layout_results_{pdf_result['session_id']}.zip")
try:
with zipfile.ZipFile(download_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(pdf_result['temp_dir']):
for file in files:
if file.endswith('.zip'):
continue
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, pdf_result['temp_dir'])
zipf.write(file_path, arcname)
except Exception as e:
print(f"Failed to create download ZIP: {e}")
download_zip_path = None
return (
current_page_layout_image, # Use the image with layout boxes
info_text,
combined_md or "No markdown content generated", # Display the markdown for the entire PDF
combined_md_raw or "No markdown content generated", # Display the raw markdown for the entire PDF
gr.update(value=download_zip_path, visible=True) if download_zip_path else gr.update(visible=False), # Set the download file
page_info,
current_page_json
)
except Exception as e:
# Reset the PDF cache
pdf_cache["images"] = []
pdf_cache["current_page"] = 0
pdf_cache["total_pages"] = 0
pdf_cache["is_parsed"] = False
pdf_cache["results"] = []
raise e
def clear_all_data():
"""Clears all data"""
global processing_results, pdf_cache
# Clean up the temporary directory
if processing_results.get('temp_dir') and os.path.exists(processing_results['temp_dir']):
import shutil
try:
shutil.rmtree(processing_results['temp_dir'], ignore_errors=True)
except Exception as e:
print(f"Failed to clean up temporary directory: {e}")
# Reset processing results
processing_results = {
'original_image': None,
'processed_image': None,
'layout_result': None,
'markdown_content': None,
'cells_data': None,
'temp_dir': None,
'session_id': None,
'result_paths': None,
'pdf_results': None
}
# Reset the PDF cache
pdf_cache = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None,
"is_parsed": False,
"results": []
}
return (
None, # Clear file input
"", # Clear test image selection
None, # Clear result image
"Waiting for processing results...", # Reset info display
"## Waiting for processing results...", # Reset Markdown display
"🕐 Waiting for parsing result...", # Clear raw Markdown text
gr.update(visible=False), # Hide download button
"0 / 0
", # Reset page info
"🕐 Waiting for parsing result..." # Clear current page JSON
)
def update_prompt_display(prompt_mode):
"""Updates the prompt display content"""
return dict_promptmode_to_prompt[prompt_mode]
# ==================== Gradio Interface ====================
def create_gradio_interface():
"""Creates the Gradio interface"""
# CSS styles, matching the reference style
css = """
#parse_button {
background: #FF576D !important; /* !important 确保覆盖主题默认样式 */
border-color: #FF576D !important;
}
/* 鼠标悬停时的颜色 */
#parse_button:hover {
background: #F72C49 !important;
border-color: #F72C49 !important;
}
#page_info_html {
display: flex;
align-items: center;
justify-content: center;
height: 100%;
margin: 0 12px;
}
#page_info_box {
padding: 8px 20px;
font-size: 16px;
border: 1px solid #bbb;
border-radius: 8px;
background-color: #f8f8f8;
text-align: center;
min-width: 80px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
}
#markdown_output {
min-height: 800px;
overflow: auto;
}
footer {
visibility: hidden;
}
#info_box {
padding: 10px;
background-color: #f8f9fa;
border-radius: 8px;
border: 1px solid #dee2e6;
margin: 10px 0;
font-size: 14px;
}
#result_image {
border-radius: 8px;
}
#markdown_tabs {
height: 100%;
}
"""
with gr.Blocks(theme="ocean", css=css, title='dots.ocr') as demo:
# Title
gr.HTML("""
🔍 dots.ocr
Supports image/PDF layout analysis and structured output
""")
with gr.Row():
# Left side: Input and Configuration
with gr.Column(scale=1, elem_id="left-panel"):
gr.Markdown("### 📥 Upload & Select")
file_input = gr.File(
label="Upload PDF/Image",
type="filepath",
file_types=[".pdf", ".jpg", ".jpeg", ".png"],
)
test_images = get_test_images()
test_image_input = gr.Dropdown(
label="Or Select an Example",
choices=[""] + test_images,
value="",
)
gr.Markdown("### ⚙️ Prompt & Actions")
prompt_mode = gr.Dropdown(
label="Select Prompt",
choices=["prompt_layout_all_en", "prompt_layout_only_en", "prompt_ocr"],
value="prompt_layout_all_en",
show_label=True
)
# Display current prompt content
prompt_display = gr.Textbox(
label="Current Prompt Content",
value=dict_promptmode_to_prompt[list(dict_promptmode_to_prompt.keys())[0]],
lines=4,
max_lines=8,
interactive=False,
show_copy_button=True
)
with gr.Row():
process_btn = gr.Button("🔍 Parse", variant="primary", scale=2, elem_id="parse_button")
clear_btn = gr.Button("🗑️ Clear", variant="secondary", scale=1)
with gr.Accordion("🛠️ Advanced Configuration", open=False):
fitz_preprocess = gr.Checkbox(
label="Enable fitz_preprocess for images",
value=True,
info="Processes image via a PDF-like pipeline (image->pdf->200dpi image). Recommended if your image DPI is low."
)
with gr.Row():
server_ip = gr.Textbox(label="Server IP", value=DEFAULT_CONFIG['ip'])
server_port = gr.Number(label="Port", value=DEFAULT_CONFIG['port_vllm'], precision=0)
with gr.Row():
min_pixels = gr.Number(label="Min Pixels", value=DEFAULT_CONFIG['min_pixels'], precision=0)
max_pixels = gr.Number(label="Max Pixels", value=DEFAULT_CONFIG['max_pixels'], precision=0)
# Right side: Result Display
with gr.Column(scale=6, variant="compact"):
with gr.Row():
# Result Image
with gr.Column(scale=3):
gr.Markdown("### 👁️ File Preview")
result_image = gr.Image(
label="Layout Preview",
visible=True,
height=800,
show_label=False
)
# Page navigation (shown during PDF preview)
with gr.Row():
prev_btn = gr.Button("⬅ Previous", size="sm")
page_info = gr.HTML(
value="0 / 0
",
elem_id="page_info_html"
)
next_btn = gr.Button("Next ➡", size="sm")
# Info Display
info_display = gr.Markdown(
"Waiting for processing results...",
elem_id="info_box"
)
# Markdown Result
with gr.Column(scale=3):
gr.Markdown("### ✔️ Result Display")
with gr.Tabs(elem_id="markdown_tabs"):
with gr.TabItem("Markdown Render Preview"):
md_output = gr.Markdown(
"## Please click the parse button to parse or select for single-task recognition...",
label="Markdown Preview",
max_height=600,
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
],
show_copy_button=False,
elem_id="markdown_output"
)
with gr.TabItem("Markdown Raw Text"):
md_raw_output = gr.Textbox(
value="🕐 Waiting for parsing result...",
label="Markdown Raw Text",
max_lines=100,
lines=38,
show_copy_button=True,
elem_id="markdown_output",
show_label=False
)
with gr.TabItem("Current Page JSON"):
current_page_json = gr.Textbox(
value="🕐 Waiting for parsing result...",
label="Current Page JSON",
max_lines=100,
lines=38,
show_copy_button=True,
elem_id="markdown_output",
show_label=False
)
# Download Button
with gr.Row():
download_btn = gr.DownloadButton(
"⬇️ Download Results",
visible=False
)
# When the prompt mode changes, update the display content
prompt_mode.change(
fn=update_prompt_display,
inputs=prompt_mode,
outputs=prompt_display,
show_progress=False
)
# Show preview on file upload
file_input.upload(
fn=load_file_for_preview,
inputs=file_input,
outputs=[result_image, page_info],
show_progress=False
)
# Page navigation
prev_btn.click(
fn=lambda: turn_page("prev"),
outputs=[result_image, page_info, current_page_json],
show_progress=False
)
next_btn.click(
fn=lambda: turn_page("next"),
outputs=[result_image, page_info, current_page_json],
show_progress=False
)
process_btn.click(
fn=process_image_inference,
inputs=[
test_image_input, file_input,
prompt_mode, server_ip, server_port, min_pixels, max_pixels,
fitz_preprocess
],
outputs=[
result_image, info_display, md_output, md_raw_output,
download_btn, page_info, current_page_json
],
show_progress=True
)
clear_btn.click(
fn=clear_all_data,
outputs=[
file_input, test_image_input,
result_image, info_display, md_output, md_raw_output,
download_btn, page_info, current_page_json
],
show_progress=False
)
return demo
# ==================== Main Program ====================
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
debug=True
)