| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- import os
- if "LOCAL_RANK" not in os.environ:
- os.environ["LOCAL_RANK"] = "0"
- import torch
- from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
- from qwen_vl_utils import process_vision_info
- from dots_ocr.utils import dict_promptmode_to_prompt
- def inference(image_path, prompt, model, processor):
- # image_path = "demo/demo_image1.jpg"
- messages = [
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "image": image_path
- },
- {"type": "text", "text": prompt}
- ]
- }
- ]
- # Preparation for inference
- text = processor.apply_chat_template(
- messages,
- tokenize=False,
- add_generation_prompt=True
- )
- image_inputs, video_inputs = process_vision_info(messages)
- inputs = processor(
- text=[text],
- images=image_inputs,
- videos=video_inputs,
- padding=True,
- return_tensors="pt",
- )
- inputs = inputs.to("cuda")
- # Inference: Generation of the output
- generated_ids = model.generate(**inputs, max_new_tokens=24000)
- generated_ids_trimmed = [
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
- ]
- output_text = processor.batch_decode(
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
- )
- print(output_text)
- if __name__ == "__main__":
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
- model_path = "./weights/DotsOCR"
- model = AutoModelForCausalLM.from_pretrained(
- model_path,
- attn_implementation="flash_attention_2",
- torch_dtype=torch.bfloat16,
- device_map="auto",
- trust_remote_code=True
- )
- processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
- image_path = "demo/demo_image1.jpg"
- for prompt_mode, prompt in dict_promptmode_to_prompt.items():
- print(f"prompt: {prompt}")
- inference(image_path, prompt, model, processor)
-
|