| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- from typing import List, Optional, Tuple, Union
- import torch
- from transformers.modeling_outputs import CausalLMOutputWithPast
- from transformers.models.qwen2 import Qwen2ForCausalLM
- from .configuration_dots import DotsVisionConfig, DotsOCRConfig
- from .modeling_dots_vision import DotsVisionTransformer
- DOTS_VLM_MAX_IMAGES = 200
- class DotsOCRForCausalLM(Qwen2ForCausalLM):
- config_class = DotsOCRConfig
- def __init__(self, config: DotsOCRConfig):
- super().__init__(config)
- if isinstance(self.config.vision_config, dict):
- vision_config = DotsVisionConfig(**self.config.vision_config)
- self.config.vision_config = vision_config
- else:
- vision_config = self.config.vision_config
- self.vision_tower = DotsVisionTransformer(vision_config)
- def prepare_inputs_embeds(
- self,
- input_ids: torch.LongTensor,
- pixel_values: Optional[torch.FloatTensor] = None,
- grid_thw: Optional[torch.FloatTensor] = None,
- img_mask: Optional[torch.BoolTensor] = None,
- ) -> torch.Tensor:
- inputs_embeds = self.get_input_embeddings()(input_ids)
- if pixel_values is not None:
- assert img_mask is not None
- if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
- print(
- f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
- )
- vision_embeddings = self.vision_tower(pixel_values, grid_thw)
- true_indices = torch.nonzero(img_mask).squeeze()
- if len(true_indices) > vision_embeddings.size(0):
- print(
- f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
- )
- true_indices = true_indices[: vision_embeddings.size(0)]
- new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
- new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
- else:
- new_img_mask = img_mask
- assert (
- vision_embeddings.size(0) == new_img_mask.sum()
- ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
- inputs_embeds = inputs_embeds.masked_scatter(
- new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
- vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
- )
- return inputs_embeds
- def forward(
- self,
- input_ids: torch.LongTensor,
- pixel_values: Optional[torch.FloatTensor] = None,
- image_grid_thw: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- labels: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- use_cache: Optional[bool] = None,
- logits_to_keep: int = 0,
- **loss_kwargs,
- ) -> Union[Tuple, CausalLMOutputWithPast]:
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
- if inputs_embeds is None:
- img_mask = input_ids == self.config.image_token_id
- inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
- outputs = super().forward(
- inputs_embeds=inputs_embeds,
- attention_mask=attention_mask,
- position_ids=position_ids,
- past_key_values=past_key_values,
- labels=labels,
- use_cache=use_cache if use_cache is not None else self.config.use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- # return_dict=return_dict,
- logits_to_keep=logits_to_keep,
- **loss_kwargs,
- )
- return outputs
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- inputs_embeds=None,
- pixel_values=None,
- attention_mask=None,
- cache_position=None,
- num_logits_to_keep=None,
- **kwargs,
- ):
- model_inputs = super().prepare_inputs_for_generation(
- input_ids,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- attention_mask=attention_mask,
- cache_position=cache_position,
- num_logits_to_keep=num_logits_to_keep,
- **kwargs,
- )
- if cache_position[0] == 0:
- model_inputs["pixel_values"] = pixel_values
- return model_inputs
|