| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint
- try:
- from flash_attn import flash_attn_varlen_func
- HAS_FLASH_ATTN = True
- except ImportError:
- HAS_FLASH_ATTN = False
- def flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False, **kwargs):
- """
- Float16 optimized fallback implementation for flash_attn_varlen_func.
- Optimized for Apple Silicon MPS.
- """
- print("Flash Attention not available. Using float16 MPS-optimized fallback.")
-
- # q, k, v shapes: (total_seq_len, num_heads, head_dim)
- batch_size = len(cu_seqlens_q) - 1
- outputs = []
-
- for i in range(batch_size):
- start_q = cu_seqlens_q[i]
- end_q = cu_seqlens_q[i + 1]
- start_k = cu_seqlens_k[i]
- end_k = cu_seqlens_k[i + 1]
-
- q_seq = q[start_q:end_q] # (seq_len_q, num_heads, head_dim)
- k_seq = k[start_k:end_k] # (seq_len_k, num_heads, head_dim)
- v_seq = v[start_k:end_k] # (seq_len_k, num_heads, head_dim)
-
- # Transpose for standard attention: (num_heads, seq_len, head_dim)
- q_seq = q_seq.transpose(0, 1)
- k_seq = k_seq.transpose(0, 1)
- v_seq = v_seq.transpose(0, 1)
-
- # Standard scaled dot-product attention with float16 optimization
- scores = torch.matmul(q_seq, k_seq.transpose(-2, -1)) / math.sqrt(q_seq.size(-1))
-
- # Apply causal mask if needed
- if causal and q_seq.size(1) > 1:
- seq_len = q_seq.size(1)
- causal_mask = torch.triu(torch.ones(seq_len, seq_len, device=q.device, dtype=q.dtype), diagonal=1).bool()
- scores.masked_fill_(causal_mask, float('-inf'))
-
- # Use float32 for softmax stability, then convert back to float16
- attn_weights = F.softmax(scores.float(), dim=-1).to(q.dtype)
- attn_output = torch.matmul(attn_weights, v_seq)
-
- # Transpose back: (seq_len, num_heads, head_dim)
- attn_output = attn_output.transpose(0, 1)
- outputs.append(attn_output)
-
- # Concatenate all sequences
- return torch.cat(outputs, dim=0)
- from torch.nn import LayerNorm
- from transformers.modeling_utils import PreTrainedModel
- from .configuration_dots import DotsVisionConfig
- def rotate_half(x):
- """Rotates half the hidden dims of the input."""
- x1 = x[..., : x.shape[-1] // 2]
- x2 = x[..., x.shape[-1] // 2 :]
- return torch.cat((-x2, x1), dim=-1)
- def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
- orig_dtype = tensor.dtype
- # For float16, use float32 for computation stability
- tensor = tensor.float()
- cos = freqs.cos()
- sin = freqs.sin()
- cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
- sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
- output = (tensor * cos) + (rotate_half(tensor) * sin)
- # Convert back to original dtype (float16 for MPS efficiency)
- output = output.to(orig_dtype)
- return output
- class VisionRotaryEmbedding(nn.Module):
- def __init__(self, dim: int, theta: float = 10000.0) -> None:
- super().__init__()
- inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
- self.register_buffer("inv_freq", inv_freq, persistent=False)
- def forward(self, seqlen: int) -> torch.Tensor:
- seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
- freqs = torch.outer(seq, self.inv_freq)
- return freqs
- class PatchMerger(nn.Module):
- def __init__(
- self,
- dim: int,
- context_dim: int,
- spatial_merge_size: int = 2,
- pre_norm="layernorm",
- init_merger_std=None,
- ) -> None:
- super().__init__()
- self.hidden_size = context_dim * (spatial_merge_size**2)
- self.pre_norm = pre_norm
- if self.pre_norm == "layernorm":
- self.ln_q = LayerNorm(context_dim, eps=1e-6)
- elif self.pre_norm == "rmsnorm":
- self.ln_q = RMSNorm(context_dim, eps=1e-6)
- else:
- print("no norm in patch merger")
- self.mlp = nn.Sequential(
- nn.Linear(self.hidden_size, self.hidden_size),
- nn.GELU(),
- nn.Linear(self.hidden_size, dim),
- )
- if init_merger_std is not None:
- nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
- nn.init.zeros_(self.mlp[0].bias)
- nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
- nn.init.zeros_(self.mlp[2].bias)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- if self.pre_norm:
- x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
- else:
- x = self.mlp(x.view(-1, self.hidden_size))
- return x
- class VisionAttention(nn.Module):
- def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
- super().__init__()
- self.num_heads = num_heads
- self.head_dim = dim // num_heads
- self.qkv = nn.Linear(dim, dim * 3, bias=bias)
- self.proj = nn.Linear(dim, dim, bias=bias)
- def forward(
- self,
- hidden_states: torch.Tensor,
- cu_seqlens: torch.Tensor,
- rotary_pos_emb: torch.Tensor = None,
- ) -> torch.Tensor:
- seq_length = hidden_states.shape[0]
- q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
- q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
- k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
- attention_mask = torch.full(
- [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
- )
- for i in range(1, len(cu_seqlens)):
- attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
- q = q.transpose(0, 1)
- k = k.transpose(0, 1)
- v = v.transpose(0, 1)
- attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
- attn_weights = attn_weights + attention_mask
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
- attn_output = torch.matmul(attn_weights, v)
- attn_output = attn_output.transpose(0, 1)
- attn_output = attn_output.reshape(seq_length, -1)
- attn_output = self.proj(attn_output)
- return attn_output
- class VisionFlashAttention2(nn.Module):
- def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
- super().__init__()
- self.num_heads = num_heads
- self.qkv = nn.Linear(dim, dim * 3, bias=bias)
- self.proj = nn.Linear(dim, dim, bias=bias)
- self.config = config
- self.is_causal = config.is_causal
- def forward(
- self,
- hidden_states: torch.Tensor,
- cu_seqlens: torch.Tensor,
- rotary_pos_emb: torch.Tensor = None,
- ) -> torch.Tensor:
- seq_length = hidden_states.shape[0]
- q, k, v = (
- self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
- ) # 'shd'
- q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
- k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
- max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
- attn_output = flash_attn_varlen_func(
- q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
- ).reshape(seq_length, -1)
- attn_output = self.proj(attn_output)
- return attn_output
- class VisionSdpaAttention(nn.Module):
- def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
- super().__init__()
- self.num_heads = num_heads
- self.qkv = nn.Linear(dim, dim * 3, bias=bias)
- self.proj = nn.Linear(dim, dim, bias=bias)
- self.config = config
- def forward(
- self,
- hidden_states: torch.Tensor,
- cu_seqlens: torch.Tensor,
- rotary_pos_emb: torch.Tensor = None,
- ) -> torch.Tensor:
- seq_length = hidden_states.shape[0]
- q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
- q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
- k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
- attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
- for i in range(1, len(cu_seqlens)):
- attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
- q = q.transpose(0, 1)
- k = k.transpose(0, 1)
- v = v.transpose(0, 1)
- attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
- attn_output = attn_output.transpose(0, 1)
- attn_output = attn_output.reshape(seq_length, -1)
- attn_output = self.proj(attn_output)
- return attn_output
- DOTS_VISION_ATTENTION_CLASSES = {
- "eager": VisionAttention,
- "flash_attention_2": VisionFlashAttention2,
- "sdpa": VisionSdpaAttention,
- }
- class RMSNorm(nn.Module):
- def __init__(self, dim: int, eps: float = 1e-6):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(dim))
- self.eps = eps
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- output = self._norm(x.float()).type_as(x)
- return output * self.weight
- def extra_repr(self) -> str:
- return f"{tuple(self.weight.shape)}, eps={self.eps}"
- def _norm(self, x: torch.Tensor) -> torch.Tensor:
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
- class DotsSwiGLUFFN(nn.Module):
- def __init__(self, config):
- super().__init__()
- hidden_features = config.intermediate_size
- in_features = config.embed_dim
- bias = config.use_bias
- self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
- self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
- self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = F.silu(self.fc1(x)) * self.fc3(x)
- x = self.fc2(x)
- return x
- class DotsPatchEmbed(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.num_channels = config.num_channels
- self.patch_size = config.patch_size
- self.temporal_patch_size = config.temporal_patch_size
- self.embed_dim = config.embed_dim
- self.config = config
- self.proj = nn.Conv2d(
- config.num_channels,
- config.embed_dim,
- kernel_size=(config.patch_size, config.patch_size),
- stride=(config.patch_size, config.patch_size),
- )
- self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
- def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
- x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
- x = self.proj(x).view(-1, self.embed_dim)
- x = self.norm(x)
- return x
- class DotsViTPreprocessor(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.patch_h = config.patch_size
- self.patch_w = config.patch_size
- self.embed_dim = config.embed_dim
- self.config = config
- self.patchifier = DotsPatchEmbed(config)
- def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
- tokens = self.patchifier(x, grid_thw)
- return tokens
- class DotsVisionBlock(nn.Module):
- def __init__(self, config, attn_implementation: str = "flash_attention_2"):
- super().__init__()
- self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
- config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
- )
- self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
- self.mlp = DotsSwiGLUFFN(config)
- self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
- def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
- hidden_states = hidden_states + self.attn(
- self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
- )
- hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
- return hidden_states
- class DotsVisionTransformer(PreTrainedModel):
- def __init__(self, config: DotsVisionConfig) -> None:
- super().__init__(config)
- self.config = config
- self.spatial_merge_size = config.spatial_merge_size
- self.patch_embed = DotsViTPreprocessor(config)
- self._init_weights(self.patch_embed.patchifier.proj)
- head_dim = config.embed_dim // config.num_attention_heads
- self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
- _num_hidden_layers = config.num_hidden_layers
- self.blocks = nn.ModuleList(
- [DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
- )
- if self.config.post_norm:
- self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
- self.merger = PatchMerger(
- dim=config.hidden_size,
- context_dim=config.embed_dim,
- spatial_merge_size=config.spatial_merge_size,
- init_merger_std=self.config.init_merger_std,
- )
- self.gradient_checkpointing = False
- self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
- def _init_weights(self, module):
- std = self.config.initializer_range
- if isinstance(module, (nn.Linear, nn.Conv3d)):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- @property
- def dtype(self) -> torch.dtype:
- return self.blocks[0].mlp.fc2.weight.dtype
- @property
- def device(self) -> torch.device:
- return self.blocks[0].mlp.fc2.weight.device
- def get_pos_ids_by_grid(self, grid_thw):
- pos_ids = []
- for t, h, w in grid_thw:
- hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
- hpos_ids = hpos_ids.reshape(
- h // self.spatial_merge_size,
- self.spatial_merge_size,
- w // self.spatial_merge_size,
- self.spatial_merge_size,
- )
- hpos_ids = hpos_ids.permute(0, 2, 1, 3)
- hpos_ids = hpos_ids.flatten()
- wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
- wpos_ids = wpos_ids.reshape(
- h // self.spatial_merge_size,
- self.spatial_merge_size,
- w // self.spatial_merge_size,
- self.spatial_merge_size,
- )
- wpos_ids = wpos_ids.permute(0, 2, 1, 3)
- wpos_ids = wpos_ids.flatten()
- pos_ids.append(
- torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
- )
- return pos_ids
- def rot_pos_emb(self, grid_thw):
- pos_ids = self.get_pos_ids_by_grid(grid_thw)
- pos_ids = torch.cat(pos_ids, dim=0)
- max_grid_size = grid_thw[:, 1:].max()
- rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
- rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
- return rotary_pos_emb
- def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
- if bf16:
- hidden_states = hidden_states.to(torch.float16)
- hidden_states = self.patch_embed(hidden_states, grid_thw)
- rotary_pos_emb = self.rot_pos_emb(grid_thw)
- cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
- dim=0,
- dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
- )
- cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
- for blk in self.blocks:
- if self.gradient_checkpointing and self.training:
- hidden_states = self._gradient_checkpointing_func(
- blk.__call__,
- hidden_states,
- cu_seqlens,
- rotary_pos_emb,
- use_reentrant=(self.config.ckpt_use_reentrant or self.config.ve_ckpt_use_reentrant),
- )
- else:
- hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
- if self.config.post_norm:
- hidden_states = self.post_trunk_norm(hidden_states)
- hidden_states = self.merger(hidden_states)
- return hidden_states
|