| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
- """
- 批量处理 OmniDocBench 图片并生成符合评测要求的预测结果
- 根据 OmniDocBench 评测要求:
- - 输入:OpenDataLab___OmniDocBench/images 下的所有 .jpg 图片
- - 输出:每个图片对应的 .md、.json 和带标注的 layout 图片文件
- - 输出目录:用于后续的 end2end 评测
- """
- import os
- import sys
- import json
- import tempfile
- import uuid
- import shutil
- import time
- import traceback
- import warnings
- from pathlib import Path
- from typing import List, Dict, Any
- from PIL import Image
- from tqdm import tqdm
- import argparse
- # 导入 dots.ocr 相关模块
- from dots_ocr.parser import DotsOCRParser
- from dots_ocr.utils import dict_promptmode_to_prompt
- from dots_ocr.utils.consts import MIN_PIXELS, MAX_PIXELS
- # 导入工具函数
- from utils import (
- get_image_files_from_dir,
- get_image_files_from_list,
- get_image_files_from_csv,
- collect_pid_files
- )
- class DotsOCRProcessor:
- """DotsOCR 处理器"""
-
- def __init__(self,
- ip: str = "127.0.0.1",
- port: int = 8101,
- model_name: str = "DotsOCR",
- prompt_mode: str = "prompt_layout_all_en",
- dpi: int = 200,
- min_pixels: int = MIN_PIXELS,
- max_pixels: int = MAX_PIXELS):
- """
- 初始化处理器
-
- Args:
- ip: vLLM 服务器 IP
- port: vLLM 服务器端口
- model_name: 模型名称
- prompt_mode: 提示模式
- dpi: PDF 处理 DPI
- min_pixels: 最小像素数
- max_pixels: 最大像素数
- """
- self.ip = ip
- self.port = port
- self.model_name = model_name
- self.prompt_mode = prompt_mode
- self.dpi = dpi
- self.min_pixels = min_pixels
- self.max_pixels = max_pixels
-
- # 初始化解析器
- self.parser = DotsOCRParser(
- ip=ip,
- port=port,
- dpi=dpi,
- min_pixels=min_pixels,
- max_pixels=max_pixels,
- model_name=model_name
- )
-
- print(f"DotsOCR Parser 初始化完成:")
- print(f" - 服务器: {ip}:{port}")
- print(f" - 模型: {model_name}")
- print(f" - 提示模式: {prompt_mode}")
- print(f" - 像素范围: {min_pixels} - {max_pixels}")
-
- def create_temp_session_dir(self) -> tuple:
- """创建临时会话目录"""
- session_id = uuid.uuid4().hex[:8]
- temp_dir = os.path.join(tempfile.gettempdir(), f"omnidocbench_batch_{session_id}")
- os.makedirs(temp_dir, exist_ok=True)
- return temp_dir, session_id
-
- def save_results_to_output_dir(self, result: Dict, image_name: str, output_dir: str) -> Dict[str, str]:
- """
- 将处理结果保存到输出目录
-
- Args:
- result: 解析结果
- image_name: 图片文件名(不含扩展名)
- output_dir: 输出目录
-
- Returns:
- dict: 保存的文件路径
- """
- saved_files = {}
-
- try:
- # 1. 保存 Markdown 文件(OmniDocBench 评测必需)
- output_md_path = os.path.join(output_dir, f"{image_name}.md")
- md_content = ""
-
- # 优先使用无页眉页脚的版本(符合 OmniDocBench 评测要求)
- if 'md_content_nohf_path' in result and os.path.exists(result['md_content_nohf_path']):
- with open(result['md_content_nohf_path'], 'r', encoding='utf-8') as f:
- md_content = f.read()
- elif 'md_content_path' in result and os.path.exists(result['md_content_path']):
- with open(result['md_content_path'], 'r', encoding='utf-8') as f:
- md_content = f.read()
- else:
- md_content = "# 解析失败\n\n未能提取到有效的文档内容。"
-
- with open(output_md_path, 'w', encoding='utf-8') as f:
- f.write(md_content)
- saved_files['md'] = output_md_path
-
- # 2. 保存 JSON 文件
- output_json_path = os.path.join(output_dir, f"{image_name}.json")
- json_data = {}
-
- if 'layout_info_path' in result and os.path.exists(result['layout_info_path']):
- with open(result['layout_info_path'], 'r', encoding='utf-8') as f:
- json_data = json.load(f)
- else:
- json_data = {
- "error": "未能提取到有效的布局信息",
- "cells": []
- }
-
- with open(output_json_path, 'w', encoding='utf-8') as f:
- json.dump(json_data, f, ensure_ascii=False, indent=2)
- saved_files['json'] = output_json_path
-
- # 3. 保存带标注的布局图片
- output_layout_image_path = os.path.join(output_dir, f"{image_name}_layout.jpg")
-
- if 'layout_image_path' in result and os.path.exists(result['layout_image_path']):
- # 直接复制布局图片
- shutil.copy2(result['layout_image_path'], output_layout_image_path)
- saved_files['layout_image'] = output_layout_image_path
- else:
- # 如果没有布局图片,使用原始图片作为占位符
- try:
- original_image = Image.open(result.get('original_image_path', ''))
- original_image.save(output_layout_image_path, 'JPEG', quality=95)
- saved_files['layout_image'] = output_layout_image_path
- except Exception as e:
- saved_files['layout_image'] = None
-
- # # 4. 可选:保存原始图片副本
- # output_original_image_path = os.path.join(output_dir, f"{image_name}_original.jpg")
- # if 'original_image_path' in result and os.path.exists(result['original_image_path']):
- # shutil.copy2(result['original_image_path'], output_original_image_path)
- # saved_files['original_image'] = output_original_image_path
-
- except Exception as e:
- print(f"Error saving results for {image_name}: {e}")
-
- return saved_files
-
- def process_single_image(self, image_path: str, output_dir: str) -> Dict[str, Any]:
- """
- 处理单张图片
-
- Args:
- image_path: 图片路径
- output_dir: 输出目录
-
- Returns:
- dict: 处理结果
- """
- start_time = time.time()
- image_name = Path(image_path).stem
-
- result_info = {
- "image_path": image_path,
- "processing_time": 0,
- "success": False,
- "device": f"{self.ip}:{self.port}",
- "error": None,
- "output_files": {}
- }
-
- try:
- # 检查输出文件是否已存在
- output_md_path = os.path.join(output_dir, f"{image_name}.md")
- output_json_path = os.path.join(output_dir, f"{image_name}.json")
- output_layout_path = os.path.join(output_dir, f"{image_name}_layout.jpg")
-
- if all(os.path.exists(p) for p in [output_md_path, output_json_path, output_layout_path]):
- result_info.update({
- "success": True,
- "processing_time": 0,
- "output_files": {
- "md": output_md_path,
- "json": output_json_path,
- "layout_image": output_layout_path
- },
- "skipped": True
- })
- return result_info
-
- # 创建临时会话目录
- temp_dir, session_id = self.create_temp_session_dir()
-
- try:
- # 读取图片
- image = Image.open(image_path)
-
- # 使用 DotsOCRParser 处理图片
- filename = f"omnidocbench_{session_id}"
- results = self.parser.parse_image(
- input_path=image,
- filename=filename,
- prompt_mode=self.prompt_mode,
- save_dir=temp_dir,
- fitz_preprocess=True # 对图片使用 fitz 预处理
- )
-
- # 解析结果
- if not results:
- raise Exception("未返回解析结果")
-
- result = results[0] # parse_image 返回单个结果的列表
-
- # 添加原始图片路径到结果中
- # result['original_image_path'] = image_path
-
- # 保存所有结果文件到输出目录
- saved_files = self.save_results_to_output_dir(result, image_name, output_dir)
-
- # 验证保存结果
- success_count = sum(1 for path in saved_files.values() if path and os.path.exists(path))
-
- if success_count >= 2: # 至少保存了 md 和 json
- result_info.update({
- "success": True,
- "output_files": saved_files
- })
- else:
- raise Exception(f"保存文件不完整 ({success_count}/3)")
-
- finally:
- # 清理临时目录
- if os.path.exists(temp_dir):
- shutil.rmtree(temp_dir, ignore_errors=True)
-
- except Exception as e:
- result_info["error"] = str(e)
-
- finally:
- result_info["processing_time"] = time.time() - start_time
-
- return result_info
- def process_images_single_process(image_paths: List[str],
- processor: DotsOCRProcessor,
- batch_size: int = 1,
- output_dir: str = "./output") -> List[Dict[str, Any]]:
- """
- 单进程版本的图像处理函数
-
- Args:
- image_paths: 图像路径列表
- processor: DotsOCR处理器实例
- batch_size: 批处理大小
- output_dir: 输出目录
-
- Returns:
- 处理结果列表
- """
- # 创建输出目录
- output_path = Path(output_dir)
- output_path.mkdir(parents=True, exist_ok=True)
-
- all_results = []
- total_images = len(image_paths)
-
- print(f"Processing {total_images} images with batch size {batch_size}")
-
- # 使用tqdm显示进度,添加更多统计信息
- with tqdm(total=total_images, desc="Processing images", unit="img",
- bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') as pbar:
-
- # 按批次处理图像(DotsOCR通常单张处理)
- for i in range(0, total_images, batch_size):
- batch = image_paths[i:i + batch_size]
- batch_start_time = time.time()
- batch_results = []
-
- try:
- # 处理批次中的每张图片
- for image_path in batch:
- try:
- result = processor.process_single_image(image_path, output_dir)
- batch_results.append(result)
-
- except Exception as e:
- print(f"Error processing {image_path}: {e}", file=sys.stderr)
- traceback.print_exc()
-
- batch_results.append({
- "image_path": image_path,
- "processing_time": 0,
- "success": False,
- "device": f"{processor.ip}:{processor.port}",
- "error": str(e)
- })
-
- batch_processing_time = time.time() - batch_start_time
- all_results.extend(batch_results)
-
- # 更新进度条
- success_count = sum(1 for r in batch_results if r.get('success', False))
- skipped_count = sum(1 for r in batch_results if r.get('skipped', False))
- total_success = sum(1 for r in all_results if r.get('success', False))
- total_skipped = sum(1 for r in all_results if r.get('skipped', False))
- avg_time = batch_processing_time / len(batch)
-
- pbar.update(len(batch))
- pbar.set_postfix({
- 'batch_time': f"{batch_processing_time:.2f}s",
- 'avg_time': f"{avg_time:.2f}s/img",
- 'success': f"{total_success}/{len(all_results)}",
- 'skipped': f"{total_skipped}",
- 'rate': f"{total_success/len(all_results)*100:.1f}%"
- })
-
- except Exception as e:
- print(f"Error processing batch {[Path(p).name for p in batch]}: {e}", file=sys.stderr)
- traceback.print_exc()
-
- # 为批次中的所有图像添加错误结果
- error_results = []
- for img_path in batch:
- error_results.append({
- "image_path": str(img_path),
- "processing_time": 0,
- "success": False,
- "device": f"{processor.ip}:{processor.port}",
- "error": str(e)
- })
- all_results.extend(error_results)
- pbar.update(len(batch))
-
- return all_results
- def main():
- """主函数"""
- parser = argparse.ArgumentParser(description="DotsOCR OmniDocBench Single Process Processing")
-
- # 输入参数组
- input_group = parser.add_mutually_exclusive_group(required=True)
- input_group.add_argument("--input_dir", type=str, help="Input directory")
- input_group.add_argument("--input_file_list", type=str, help="Input file list (one file per line)")
- input_group.add_argument("--input_csv", type=str, help="Input CSV file with image_path and status columns")
- # 输出参数
- parser.add_argument("--output_dir", type=str, help="Output directory")
-
- # DotsOCR 参数
- parser.add_argument("--ip", type=str, default="127.0.0.1", help="vLLM server IP")
- parser.add_argument("--port", type=int, default=8101, help="vLLM server port")
- parser.add_argument("--model_name", type=str, default="DotsOCR", help="Model name")
- parser.add_argument("--prompt_mode", type=str, default="prompt_layout_all_en",
- choices=list(dict_promptmode_to_prompt.keys()), help="Prompt mode")
- parser.add_argument("--min_pixels", type=int, default=MIN_PIXELS, help="Minimum pixels")
- parser.add_argument("--max_pixels", type=int, default=MAX_PIXELS, help="Maximum pixels")
- parser.add_argument("--dpi", type=int, default=200, help="PDF processing DPI")
-
- # 处理参数
- parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
- parser.add_argument("--input_pattern", type=str, default="*", help="Input file pattern")
- parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 10 images)")
- parser.add_argument("--collect_results", type=str, help="收集处理结果到指定CSV文件")
- args = parser.parse_args()
-
- try:
- # 获取图像文件列表
- if args.input_csv:
- # 从CSV文件读取
- image_files = get_image_files_from_csv(args.input_csv, "fail")
- print(f"📊 Loaded {len(image_files)} files from CSV with status filter: fail")
- elif args.input_file_list:
- # 从文件列表读取
- image_files = get_image_files_from_list(args.input_file_list)
- else:
- # 从目录读取
- input_dir = Path(args.input_dir).resolve()
- print(f"📁 Input dir: {input_dir}")
-
- if not input_dir.exists():
- print(f"❌ Input directory does not exist: {input_dir}")
- return 1
- image_files = get_image_files_from_dir(input_dir, args.input_pattern)
- output_dir = Path(args.output_dir).resolve()
- print(f"📁 Output dir: {output_dir}")
- print(f"📊 Found {len(image_files)} image files")
-
- if args.test_mode:
- image_files = image_files[:10]
- print(f"🧪 Test mode: processing only {len(image_files)} images")
-
- print(f"🌐 Using server: {args.ip}:{args.port}")
- print(f"📦 Batch size: {args.batch_size}")
- print(f"🎯 Prompt mode: {args.prompt_mode}")
-
- # 创建处理器
- processor = DotsOCRProcessor(
- ip=args.ip,
- port=args.port,
- model_name=args.model_name,
- prompt_mode=args.prompt_mode,
- dpi=args.dpi,
- min_pixels=args.min_pixels,
- max_pixels=args.max_pixels
- )
-
- # 开始处理
- start_time = time.time()
- results = process_images_single_process(
- image_files,
- processor,
- args.batch_size,
- str(output_dir)
- )
- total_time = time.time() - start_time
-
- # 统计结果
- success_count = sum(1 for r in results if r.get('success', False))
- skipped_count = sum(1 for r in results if r.get('skipped', False))
- error_count = len(results) - success_count
-
- print(f"\n" + "="*60)
- print(f"✅ Processing completed!")
- print(f"📊 Statistics:")
- print(f" Total files: {len(image_files)}")
- print(f" Successful: {success_count}")
- print(f" Skipped: {skipped_count}")
- print(f" Failed: {error_count}")
- if len(image_files) > 0:
- print(f" Success rate: {success_count / len(image_files) * 100:.2f}%")
- print(f"⏱️ Performance:")
- print(f" Total time: {total_time:.2f} seconds")
- if total_time > 0:
- print(f" Throughput: {len(image_files) / total_time:.2f} images/second")
- print(f" Avg time per image: {total_time / len(image_files):.2f} seconds")
-
- # 保存结果统计
- stats = {
- "total_files": len(image_files),
- "success_count": success_count,
- "skipped_count": skipped_count,
- "error_count": error_count,
- "success_rate": success_count / len(image_files) if len(image_files) > 0 else 0,
- "total_time": total_time,
- "throughput": len(image_files) / total_time if total_time > 0 else 0,
- "avg_time_per_image": total_time / len(image_files) if len(image_files) > 0 else 0,
- "batch_size": args.batch_size,
- "server": f"{args.ip}:{args.port}",
- "model": args.model_name,
- "prompt_mode": args.prompt_mode,
- "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
- }
-
- # 保存最终结果
- output_file_name = Path(output_dir).name
- output_file = os.path.join(output_dir, f"{output_file_name}_results.json")
- final_results = {
- "stats": stats,
- "results": results
- }
-
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(final_results, f, ensure_ascii=False, indent=2)
-
- print(f"💾 Results saved to: {output_file}")
- # 收集处理结果
- if args.collect_results:
- processed_files = collect_pid_files(output_file)
- output_file_processed = Path(args.collect_results).resolve()
- with open(output_file_processed, 'w', encoding='utf-8') as f:
- f.write("image_path,status\n")
- for file_path, status in processed_files:
- f.write(f"{file_path},{status}\n")
- print(f"💾 Processed files saved to: {output_file_processed}")
- return 0
-
- except Exception as e:
- print(f"❌ Processing failed: {e}", file=sys.stderr)
- traceback.print_exc()
- return 1
- if __name__ == "__main__":
- print(f"🚀 启动DotsOCR单进程程序...")
- print(f"🔧 CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
-
- if len(sys.argv) == 1:
- # 如果没有命令行参数,使用默认配置运行
- print("ℹ️ No command line arguments provided. Running with default configuration...")
-
- # 默认配置
- default_config = {
- "input_dir": "../../OmniDocBench/OpenDataLab___OmniDocBench/images",
- "output_dir": "./OmniDocBench_DotsOCR_Results",
- "ip": "10.192.72.11",
- "port": "8101",
- "model_name": "DotsOCR",
- "prompt_mode": "prompt_layout_all_en",
- "batch_size": "1",
- "collect_results": "./OmniDocBench_DotsOCR_Results/processed_files.csv",
- }
-
- # 如果需要处理失败的文件,可以使用这个配置
- # default_config = {
- # "input_csv": "./OmniDocBench_DotsOCR_Results/processed_files.csv",
- # "output_dir": "./OmniDocBench_DotsOCR_Results",
- # "ip": "127.0.0.1",
- # "port": "8101",
- # "collect_results": f"./OmniDocBench_DotsOCR_Results/processed_files_{time.strftime('%Y%m%d_%H%M%S')}.csv",
- # }
-
- # 构造参数
- sys.argv = [sys.argv[0]]
- for key, value in default_config.items():
- sys.argv.extend([f"--{key}", str(value)])
-
- # 测试模式
- sys.argv.append("--test_mode")
-
- sys.exit(main())
|