|
|
@@ -0,0 +1,1324 @@
|
|
|
+"""
|
|
|
+数据处理模块
|
|
|
+负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
|
|
|
+"""
|
|
|
+from typing import List, Dict, Tuple, Optional
|
|
|
+from bs4 import BeautifulSoup
|
|
|
+
|
|
|
+try:
|
|
|
+ from .text_matcher import TextMatcher
|
|
|
+ from .bbox_extractor import BBoxExtractor
|
|
|
+except ImportError:
|
|
|
+ from text_matcher import TextMatcher
|
|
|
+ from bbox_extractor import BBoxExtractor
|
|
|
+
|
|
|
+
|
|
|
+class DataProcessor:
|
|
|
+ """数据处理器"""
|
|
|
+
|
|
|
+ def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10):
|
|
|
+ """
|
|
|
+ Args:
|
|
|
+ text_matcher: 文本匹配器
|
|
|
+ look_ahead_window: 向前查找窗口
|
|
|
+ """
|
|
|
+ self.text_matcher = text_matcher
|
|
|
+ self.look_ahead_window = look_ahead_window
|
|
|
+
|
|
|
+ def process_mineru_data(self, mineru_data: List[Dict],
|
|
|
+ paddle_text_boxes: List[Dict]) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 处理 MinerU 数据,添加 bbox 信息
|
|
|
+
|
|
|
+ Args:
|
|
|
+ mineru_data: MinerU 数据
|
|
|
+ paddle_text_boxes: PaddleOCR 文字框列表
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 合并后的数据, table cell使用paddle的bbox,其他类型只是移动指针,bbox还是沿用minerU的bbox
|
|
|
+ """
|
|
|
+ merged_data = []
|
|
|
+ paddle_pointer = 0
|
|
|
+ last_matched_index = 0
|
|
|
+
|
|
|
+ # 按 bbox 排序
|
|
|
+ mineru_data.sort(
|
|
|
+ key=lambda x: (x['bbox'][1], x['bbox'][0])
|
|
|
+ if 'bbox' in x else (float('inf'), float('inf'))
|
|
|
+ )
|
|
|
+
|
|
|
+ for item in mineru_data:
|
|
|
+ item_type = item.get('type', '')
|
|
|
+
|
|
|
+ if item_type == 'table':
|
|
|
+ merged_item, paddle_pointer = self._process_table(
|
|
|
+ item, paddle_text_boxes, paddle_pointer
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif item_type in ['text', 'title']:
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_text(
|
|
|
+ item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif item_type == 'list':
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_list(
|
|
|
+ item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ else:
|
|
|
+ merged_data.append(item.copy())
|
|
|
+
|
|
|
+ return merged_data
|
|
|
+
|
|
|
+ def process_dotsocr_data(self, dotsocr_data: List[Dict],
|
|
|
+ paddle_text_boxes: List[Dict]) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 🎯 处理 DotsOCR 数据,转换为 MinerU 格式并添加 bbox 信息
|
|
|
+
|
|
|
+ Args:
|
|
|
+ dotsocr_data: DotsOCR 数据
|
|
|
+ paddle_text_boxes: PaddleOCR 文字框列表
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ MinerU 格式的合并数据
|
|
|
+ """
|
|
|
+ merged_data = []
|
|
|
+ paddle_pointer = 0
|
|
|
+ last_matched_index = 0
|
|
|
+
|
|
|
+ # 按 bbox 排序
|
|
|
+ dotsocr_data.sort(
|
|
|
+ key=lambda x: (x['bbox'][1], x['bbox'][0])
|
|
|
+ if 'bbox' in x else (float('inf'), float('inf'))
|
|
|
+ )
|
|
|
+
|
|
|
+ for item in dotsocr_data:
|
|
|
+ # 🎯 转换为 MinerU 格式
|
|
|
+ mineru_item = self._convert_dotsocr_to_mineru(item)
|
|
|
+ category = mineru_item.get('type', '')
|
|
|
+
|
|
|
+ # 🎯 根据类型处理
|
|
|
+ if category.lower() == 'table':
|
|
|
+ merged_item, paddle_pointer = self._process_table(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif category.lower() in ['text', 'title', 'header', 'footer']:
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_text(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif category.lower() == 'list':
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_list(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ else:
|
|
|
+ # Page-header, Page-footer, Picture 等
|
|
|
+ merged_data.append(mineru_item)
|
|
|
+
|
|
|
+ return merged_data
|
|
|
+
|
|
|
+ def _convert_dotsocr_to_mineru(self, dotsocr_item: Dict) -> Dict:
|
|
|
+ """
|
|
|
+ 🎯 将 DotsOCR 格式转换为 MinerU 格式
|
|
|
+
|
|
|
+ DotsOCR:
|
|
|
+ {
|
|
|
+ "category": "Table",
|
|
|
+ "bbox": [x1, y1, x2, y2],
|
|
|
+ "text": "..."
|
|
|
+ }
|
|
|
+
|
|
|
+ MinerU:
|
|
|
+ {
|
|
|
+ "type": "table",
|
|
|
+ "bbox": [x1, y1, x2, y2],
|
|
|
+ "table_body": "...",
|
|
|
+ "page_idx": 0
|
|
|
+ }
|
|
|
+ """
|
|
|
+ category = dotsocr_item.get('category', '')
|
|
|
+
|
|
|
+ # 🎯 Category 映射
|
|
|
+ category_map = {
|
|
|
+ 'Page-header': 'header',
|
|
|
+ 'Page-footer': 'footer',
|
|
|
+ 'Picture': 'image',
|
|
|
+ 'Figure': 'image',
|
|
|
+ 'Section-header': 'title',
|
|
|
+ 'Table': 'table',
|
|
|
+ 'Text': 'text',
|
|
|
+ 'Title': 'title',
|
|
|
+ 'List': 'list',
|
|
|
+ 'Caption': 'title'
|
|
|
+ }
|
|
|
+
|
|
|
+ mineru_type = category_map.get(category, 'text')
|
|
|
+
|
|
|
+ # 🎯 基础转换
|
|
|
+ mineru_item = {
|
|
|
+ 'type': mineru_type,
|
|
|
+ 'bbox': dotsocr_item.get('bbox', []),
|
|
|
+ 'page_idx': 0 # DotsOCR 默认单页
|
|
|
+ }
|
|
|
+
|
|
|
+ # 🎯 处理文本内容
|
|
|
+ text = dotsocr_item.get('text', '')
|
|
|
+
|
|
|
+ if mineru_type == 'table':
|
|
|
+ # 表格:text -> table_body
|
|
|
+ mineru_item['table_body'] = text
|
|
|
+ else:
|
|
|
+ # 其他类型:保持 text
|
|
|
+ mineru_item['text'] = text
|
|
|
+
|
|
|
+ # 标题级别
|
|
|
+ if category == 'Section-header':
|
|
|
+ mineru_item['text_level'] = 1
|
|
|
+
|
|
|
+ return mineru_item
|
|
|
+
|
|
|
+ def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
|
|
|
+ paddle_text_boxes: List[Dict]) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 处理 PaddleOCR_VL 数据,添加 bbox 信息
|
|
|
+
|
|
|
+ Args:
|
|
|
+ paddleocr_vl_data: PaddleOCR_VL 数据 (JSON 对象)
|
|
|
+ paddle_text_boxes: PaddleOCR 文字框列表
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 🎯 MinerU 格式的合并数据(统一输出格式)
|
|
|
+ """
|
|
|
+ merged_data = []
|
|
|
+ paddle_pointer = 0
|
|
|
+ last_matched_index = 0
|
|
|
+
|
|
|
+ # 🎯 获取旋转角度和原始图像尺寸
|
|
|
+ rotation_angle = self._get_rotation_angle_from_vl(paddleocr_vl_data)
|
|
|
+ orig_image_size = None
|
|
|
+
|
|
|
+ if rotation_angle != 0:
|
|
|
+ orig_image_size = self._get_original_image_size_from_vl(paddleocr_vl_data)
|
|
|
+ print(f"🔄 PaddleOCR_VL 检测到旋转角度: {rotation_angle}°")
|
|
|
+ print(f"📐 原始图像尺寸: {orig_image_size[0]} x {orig_image_size[1]}")
|
|
|
+
|
|
|
+ # 提取 parsing_res_list
|
|
|
+ parsing_res_list = paddleocr_vl_data.get('parsing_res_list', [])
|
|
|
+
|
|
|
+ # 按 bbox 排序
|
|
|
+ parsing_res_list.sort(
|
|
|
+ key=lambda x: (x['block_bbox'][1], x['block_bbox'][0])
|
|
|
+ if 'block_bbox' in x else (float('inf'), float('inf'))
|
|
|
+ )
|
|
|
+
|
|
|
+ for item in parsing_res_list:
|
|
|
+ # 🎯 先转换 bbox 坐标(如果需要)
|
|
|
+ if rotation_angle != 0 and orig_image_size:
|
|
|
+ item = self._transform_vl_block_bbox(item, rotation_angle, orig_image_size)
|
|
|
+
|
|
|
+ # 🎯 统一转换为 MinerU 格式
|
|
|
+ mineru_item = self._convert_paddleocr_vl_to_mineru(item)
|
|
|
+ item_type = mineru_item.get('type', '')
|
|
|
+
|
|
|
+ # 🎯 根据类型处理(复用 MinerU 的通用方法)
|
|
|
+ if item_type == 'table':
|
|
|
+ merged_item, paddle_pointer = self._process_table(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif item_type in ['text', 'title', 'header', 'footer', 'equation']:
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_text(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ elif item_type == 'list':
|
|
|
+ merged_item, paddle_pointer, last_matched_index = self._process_list(
|
|
|
+ mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
|
|
|
+ )
|
|
|
+ merged_data.append(merged_item)
|
|
|
+
|
|
|
+ else:
|
|
|
+ # 其他类型(image 等)直接添加
|
|
|
+ merged_data.append(mineru_item)
|
|
|
+
|
|
|
+ return merged_data
|
|
|
+
|
|
|
+ def _get_rotation_angle_from_vl(self, paddleocr_vl_data: Dict) -> float:
|
|
|
+ """从 PaddleOCR_VL 数据中获取旋转角度"""
|
|
|
+ return BBoxExtractor._get_rotation_angle(paddleocr_vl_data)
|
|
|
+
|
|
|
+ def _get_original_image_size_from_vl(self, paddleocr_vl_data: Dict) -> tuple:
|
|
|
+ """从 PaddleOCR_VL 数据中获取原始图像尺寸"""
|
|
|
+ return BBoxExtractor._get_original_image_size(paddleocr_vl_data)
|
|
|
+
|
|
|
+ def _transform_vl_block_bbox(self, item: Dict, angle: float,
|
|
|
+ orig_image_size: tuple) -> Dict:
|
|
|
+ """
|
|
|
+ 转换 PaddleOCR_VL 的 block_bbox 坐标
|
|
|
+
|
|
|
+ Args:
|
|
|
+ item: PaddleOCR_VL 的 block 数据
|
|
|
+ angle: 旋转角度
|
|
|
+ orig_image_size: 原始图像尺寸
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 转换后的 block 数据
|
|
|
+ """
|
|
|
+ transformed_item = item.copy()
|
|
|
+
|
|
|
+ if 'block_bbox' not in item:
|
|
|
+ return transformed_item
|
|
|
+
|
|
|
+ block_bbox = item['block_bbox']
|
|
|
+ if len(block_bbox) < 4:
|
|
|
+ return transformed_item
|
|
|
+
|
|
|
+ # block_bbox 格式: [x1, y1, x2, y2]
|
|
|
+ # 转换为 poly 格式进行旋转
|
|
|
+ poly = [
|
|
|
+ [block_bbox[0], block_bbox[1]], # 左上
|
|
|
+ [block_bbox[2], block_bbox[1]], # 右上
|
|
|
+ [block_bbox[2], block_bbox[3]], # 右下
|
|
|
+ [block_bbox[0], block_bbox[3]] # 左下
|
|
|
+ ]
|
|
|
+
|
|
|
+ # 🎯 使用 BBoxExtractor 的坐标转换方法
|
|
|
+ transformed_poly = BBoxExtractor._inverse_rotate_coordinates(
|
|
|
+ poly, angle, orig_image_size
|
|
|
+ )
|
|
|
+
|
|
|
+ # 转换回 bbox 格式
|
|
|
+ xs = [p[0] for p in transformed_poly]
|
|
|
+ ys = [p[1] for p in transformed_poly]
|
|
|
+ transformed_bbox = [min(xs), min(ys), max(xs), max(ys)]
|
|
|
+
|
|
|
+ transformed_item['block_bbox'] = transformed_bbox
|
|
|
+
|
|
|
+ return transformed_item
|
|
|
+
|
|
|
+ def _convert_paddleocr_vl_to_mineru(self, paddleocr_vl_item: Dict) -> Dict:
|
|
|
+ """
|
|
|
+ 🎯 将 PaddleOCR_VL 格式转换为 MinerU 格式
|
|
|
+
|
|
|
+ 基于 PP-DocLayout_plus-L 的 20 种类别
|
|
|
+ """
|
|
|
+ block_label = paddleocr_vl_item.get('block_label', '')
|
|
|
+
|
|
|
+ # 🎯 PP-DocLayout_plus-L 类别映射(共 20 种)
|
|
|
+ label_map = {
|
|
|
+ # 标题类(3种)
|
|
|
+ 'paragraph_title': 'title',
|
|
|
+ 'doc_title': 'title',
|
|
|
+ 'figure_table_chart_title': 'title',
|
|
|
+
|
|
|
+ # 文本类(9种)
|
|
|
+ 'text': 'text',
|
|
|
+ 'number': 'text',
|
|
|
+ 'content': 'text',
|
|
|
+ 'abstract': 'text',
|
|
|
+ 'footnote': 'text',
|
|
|
+ 'aside_text': 'text',
|
|
|
+ 'algorithm': 'text',
|
|
|
+ 'reference': 'text',
|
|
|
+ 'reference_content': 'text',
|
|
|
+
|
|
|
+ # 页眉页脚(2种)
|
|
|
+ 'header': 'header',
|
|
|
+ 'footer': 'footer',
|
|
|
+
|
|
|
+ # 表格(1种)
|
|
|
+ 'table': 'table',
|
|
|
+
|
|
|
+ # 图片/图表(3种)
|
|
|
+ 'image': 'image',
|
|
|
+ 'chart': 'image',
|
|
|
+ 'seal': 'image',
|
|
|
+
|
|
|
+ # 公式(2种)
|
|
|
+ 'formula': 'equation',
|
|
|
+ 'formula_number': 'equation'
|
|
|
+ }
|
|
|
+
|
|
|
+ mineru_type = label_map.get(block_label, 'text')
|
|
|
+
|
|
|
+ mineru_item = {
|
|
|
+ 'type': mineru_type,
|
|
|
+ 'bbox': paddleocr_vl_item.get('block_bbox', []),
|
|
|
+ 'page_idx': 0
|
|
|
+ }
|
|
|
+
|
|
|
+ content = paddleocr_vl_item.get('block_content', '')
|
|
|
+
|
|
|
+ if mineru_type == 'table':
|
|
|
+ mineru_item['table_body'] = content
|
|
|
+ else:
|
|
|
+ mineru_item['text'] = content
|
|
|
+
|
|
|
+ # 标题级别
|
|
|
+ if block_label == 'doc_title':
|
|
|
+ mineru_item['text_level'] = 1
|
|
|
+ elif block_label == 'paragraph_title':
|
|
|
+ mineru_item['text_level'] = 2
|
|
|
+ elif block_label == 'figure_table_chart_title':
|
|
|
+ mineru_item['text_level'] = 3
|
|
|
+
|
|
|
+ return mineru_item
|
|
|
+
|
|
|
+ def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
|
|
|
+ start_pointer: int) -> Tuple[Dict, int]:
|
|
|
+ """
|
|
|
+ 处理表格类型(MinerU 格式)
|
|
|
+
|
|
|
+ 策略:
|
|
|
+ - 解析 HTML 表格
|
|
|
+ - 为每个单元格匹配 PaddleOCR 的 bbox
|
|
|
+ - 返回处理后的表格和新指针位置
|
|
|
+ """
|
|
|
+ table_body = item.get('table_body', '')
|
|
|
+
|
|
|
+ if not table_body:
|
|
|
+ print(f"⚠️ 表格内容为空,跳过")
|
|
|
+ return item, start_pointer
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 🔑 传入 table_bbox 用于筛选
|
|
|
+ table_bbox = item.get('bbox') # MinerU 提供的表格边界
|
|
|
+
|
|
|
+ enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
|
|
|
+ table_body,
|
|
|
+ paddle_text_boxes,
|
|
|
+ start_pointer,
|
|
|
+ table_bbox # ✅ 传入边界框
|
|
|
+ )
|
|
|
+
|
|
|
+ # 更新 item
|
|
|
+ item['table_body'] = enhanced_html
|
|
|
+ item['table_cells'] = cells
|
|
|
+
|
|
|
+ # 统计信息
|
|
|
+ matched_count = len(cells)
|
|
|
+ total_cells = len(BeautifulSoup(table_body, 'html.parser').find_all(['td', 'th']))
|
|
|
+
|
|
|
+ print(f" 表格单元格: {matched_count}/{total_cells} 匹配")
|
|
|
+
|
|
|
+ return item, new_pointer
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ print(f"⚠️ 表格处理失败: {e}")
|
|
|
+ import traceback
|
|
|
+ traceback.print_exc()
|
|
|
+ return item, start_pointer
|
|
|
+
|
|
|
+ def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
|
|
|
+ paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
|
|
|
+ """处理文本"""
|
|
|
+ merged_item = item.copy()
|
|
|
+ text = item.get('text', '')
|
|
|
+
|
|
|
+ matched_bbox, paddle_pointer, last_matched_index = \
|
|
|
+ self.text_matcher.find_matching_bbox(
|
|
|
+ text, paddle_text_boxes, paddle_pointer, last_matched_index,
|
|
|
+ self.look_ahead_window
|
|
|
+ )
|
|
|
+
|
|
|
+ if matched_bbox:
|
|
|
+ matched_bbox['used'] = True
|
|
|
+
|
|
|
+ return merged_item, paddle_pointer, last_matched_index
|
|
|
+
|
|
|
+ def _process_list(self, item: Dict, paddle_text_boxes: List[Dict],
|
|
|
+ paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
|
|
|
+ """处理列表"""
|
|
|
+ merged_item = item.copy()
|
|
|
+ list_items = item.get('list_items', [])
|
|
|
+
|
|
|
+ for list_item in list_items:
|
|
|
+ matched_bbox, paddle_pointer, last_matched_index = \
|
|
|
+ self.text_matcher.find_matching_bbox(
|
|
|
+ list_item, paddle_text_boxes, paddle_pointer, last_matched_index,
|
|
|
+ self.look_ahead_window
|
|
|
+ )
|
|
|
+
|
|
|
+ if matched_bbox:
|
|
|
+ matched_bbox['used'] = True
|
|
|
+
|
|
|
+ return merged_item, paddle_pointer, last_matched_index
|
|
|
+
|
|
|
+ def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
|
|
|
+ start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
|
|
|
+ """
|
|
|
+ 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
|
|
|
+
|
|
|
+ 策略:
|
|
|
+ 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
|
|
|
+ 2. 将筛选后的 boxes 按行分组
|
|
|
+ 3. 智能匹配 HTML 行与 paddle 行组
|
|
|
+ 4. 在匹配的组内查找单元格
|
|
|
+
|
|
|
+ Args:
|
|
|
+ html: HTML 表格
|
|
|
+ paddle_text_boxes: 全部 paddle OCR 结果
|
|
|
+ start_pointer: 开始位置
|
|
|
+ table_bbox: 表格边界框 [x1, y1, x2, y2]
|
|
|
+ """
|
|
|
+ soup = BeautifulSoup(html, 'html.parser')
|
|
|
+ cells = []
|
|
|
+
|
|
|
+ # 🔑 第一步:筛选表格区域内的 paddle boxes
|
|
|
+ table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
|
|
|
+ paddle_text_boxes[start_pointer:],
|
|
|
+ table_bbox,
|
|
|
+ html
|
|
|
+ )
|
|
|
+
|
|
|
+ if not table_region_boxes:
|
|
|
+ print(f"⚠️ 未在表格区域找到 paddle boxes")
|
|
|
+ return str(soup), cells, start_pointer
|
|
|
+
|
|
|
+ print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
|
|
|
+ print(f" 边界: {actual_table_bbox}")
|
|
|
+
|
|
|
+ # 🔑 第二步:将表格区域的 boxes 按行分组
|
|
|
+ grouped_boxes = self._group_paddle_boxes_by_rows(
|
|
|
+ table_region_boxes,
|
|
|
+ y_tolerance=20
|
|
|
+ )
|
|
|
+
|
|
|
+ # 🔑 第三步:在每组内按 x 坐标排序
|
|
|
+ for group in grouped_boxes:
|
|
|
+ group['boxes'].sort(key=lambda x: x['bbox'][0])
|
|
|
+
|
|
|
+ grouped_boxes.sort(key=lambda g: g['y_center'])
|
|
|
+
|
|
|
+ print(f" 分组: {len(grouped_boxes)} 行")
|
|
|
+
|
|
|
+ # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
|
|
|
+ html_rows = soup.find_all('tr')
|
|
|
+ row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
|
|
|
+
|
|
|
+ print(f" HTML行: {len(html_rows)} 行")
|
|
|
+ print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
|
|
|
+
|
|
|
+ # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
|
|
|
+ for row_idx, row in enumerate(html_rows):
|
|
|
+ group_indices = row_mapping.get(row_idx, [])
|
|
|
+
|
|
|
+ if not group_indices:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 合并多个组的 boxes
|
|
|
+ current_boxes = []
|
|
|
+ for group_idx in group_indices:
|
|
|
+ if group_idx < len(grouped_boxes):
|
|
|
+ current_boxes.extend(grouped_boxes[group_idx]['boxes'])
|
|
|
+
|
|
|
+ current_boxes.sort(key=lambda x: x['bbox'][0])
|
|
|
+
|
|
|
+ # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
|
|
|
+ html_cells = row.find_all(['td', 'th'])
|
|
|
+
|
|
|
+ if not html_cells:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 🔑 预估列边界(基于 x 坐标分布)
|
|
|
+ col_boundaries = self._estimate_column_boundaries(
|
|
|
+ current_boxes,
|
|
|
+ len(html_cells)
|
|
|
+ )
|
|
|
+
|
|
|
+ print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
|
|
|
+
|
|
|
+ # 🔑 按列分配 boxes
|
|
|
+ for col_idx, cell in enumerate(html_cells):
|
|
|
+ cell_text = cell.get_text(strip=True)
|
|
|
+
|
|
|
+ if not cell_text:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 🎯 获取该列范围内的所有 boxes
|
|
|
+ col_boxes = self._get_boxes_in_column(
|
|
|
+ current_boxes,
|
|
|
+ col_boundaries,
|
|
|
+ col_idx
|
|
|
+ )
|
|
|
+
|
|
|
+ if not col_boxes:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 🎯 尝试匹配并合并
|
|
|
+ matched_result = self._match_and_merge_boxes_for_cell(
|
|
|
+ cell_text,
|
|
|
+ col_boxes
|
|
|
+ )
|
|
|
+
|
|
|
+ if matched_result:
|
|
|
+ merged_bbox = matched_result['bbox']
|
|
|
+ merged_text = matched_result['text']
|
|
|
+
|
|
|
+ cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
|
|
|
+ cell['data-score'] = f"{matched_result['score']:.4f}"
|
|
|
+ cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
|
|
|
+
|
|
|
+ cells.append({
|
|
|
+ 'type': 'table_cell',
|
|
|
+ 'text': cell_text,
|
|
|
+ 'matched_text': merged_text,
|
|
|
+ 'bbox': merged_bbox,
|
|
|
+ 'row': row_idx + 1,
|
|
|
+ 'col': col_idx + 1,
|
|
|
+ 'score': matched_result['score'],
|
|
|
+ 'paddle_bbox_indices': matched_result['paddle_indices']
|
|
|
+ })
|
|
|
+
|
|
|
+ # 标记已使用
|
|
|
+ for box in matched_result['used_boxes']:
|
|
|
+ box['used'] = True
|
|
|
+
|
|
|
+ # 计算新的指针位置
|
|
|
+ used_count = sum(1 for box in table_region_boxes if box.get('used'))
|
|
|
+ new_pointer = start_pointer + used_count
|
|
|
+
|
|
|
+ print(f" 匹配: {len(cells)} 个单元格")
|
|
|
+
|
|
|
+ return str(soup), cells, new_pointer
|
|
|
+
|
|
|
+ def _estimate_column_boundaries(self, boxes: List[Dict],
|
|
|
+ num_cols: int) -> List[Tuple[int, int]]:
|
|
|
+ """
|
|
|
+ 估算列边界(改进版:处理同列多文本框)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ boxes: 当前行的所有 boxes(已按 x 排序)
|
|
|
+ num_cols: HTML 表格的列数
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 列边界列表 [(x_start, x_end), ...]
|
|
|
+ """
|
|
|
+ if not boxes:
|
|
|
+ return []
|
|
|
+
|
|
|
+ # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
|
|
|
+ x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=10)
|
|
|
+
|
|
|
+ print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
|
|
|
+
|
|
|
+ # 获取所有 x 坐标范围
|
|
|
+ x_min = min(cluster['x_min'] for cluster in x_clusters)
|
|
|
+ x_max = max(cluster['x_max'] for cluster in x_clusters)
|
|
|
+
|
|
|
+ # 🎯 策略 1: 如果聚类数量与列数接近
|
|
|
+ if len(x_clusters) == num_cols:
|
|
|
+ # 直接使用聚类边界
|
|
|
+ boundaries = [(cluster['x_min'], cluster['x_max'])
|
|
|
+ for cluster in x_clusters]
|
|
|
+ return boundaries
|
|
|
+
|
|
|
+ # # 🎯 策略 2: 聚类数少于列数(某些列没有文本)
|
|
|
+ # if len(x_clusters) < num_cols:
|
|
|
+ # print(f" ⚠️ 聚类数 {len(x_clusters)} < 列数 {num_cols},使用均分策略")
|
|
|
+
|
|
|
+ # # 使用聚类的间隙来推断缺失的列边界
|
|
|
+ # cluster_centers = [(c['x_min'] + c['x_max']) / 2 for c in x_clusters]
|
|
|
+
|
|
|
+ # # 计算平均列宽
|
|
|
+ # if len(cluster_centers) > 1:
|
|
|
+ # avg_gap = (x_max - x_min) / (num_cols - 1)
|
|
|
+ # else:
|
|
|
+ # avg_gap = 100 # 默认列宽
|
|
|
+
|
|
|
+ # # 生成边界
|
|
|
+ # boundaries = []
|
|
|
+ # prev_x = x_min
|
|
|
+
|
|
|
+ # for i in range(num_cols):
|
|
|
+ # if i < len(x_clusters):
|
|
|
+ # # 使用实际聚类
|
|
|
+ # boundaries.append((x_clusters[i]['x_min'], x_clusters[i]['x_max']))
|
|
|
+ # prev_x = x_clusters[i]['x_max']
|
|
|
+ # else:
|
|
|
+ # # 推断缺失列
|
|
|
+ # next_x = prev_x + avg_gap
|
|
|
+ # boundaries.append((prev_x, next_x))
|
|
|
+ # prev_x = next_x
|
|
|
+
|
|
|
+ # return boundaries
|
|
|
+
|
|
|
+ # 🎯 策略 3: 聚类数多于列数(某些列有多个文本簇)
|
|
|
+ if len(x_clusters) > num_cols:
|
|
|
+ print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
|
|
|
+
|
|
|
+ # 合并相近的簇
|
|
|
+ merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
|
|
|
+
|
|
|
+ boundaries = [(cluster['x_min'], cluster['x_max'])
|
|
|
+ for cluster in merged_clusters]
|
|
|
+ return boundaries
|
|
|
+
|
|
|
+ return []
|
|
|
+
|
|
|
+
|
|
|
+ def _cluster_boxes_by_x(self, boxes: List[Dict],
|
|
|
+ x_tolerance: int = 50) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 按 x 坐标聚类(合并同列的多个文本框)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ boxes: 文本框列表
|
|
|
+ x_tolerance: X坐标容忍度
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
|
|
|
+ """
|
|
|
+ if not boxes:
|
|
|
+ return []
|
|
|
+
|
|
|
+ # 按左边界 x 坐标排序
|
|
|
+ sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
|
|
|
+
|
|
|
+ clusters = []
|
|
|
+ current_cluster = None
|
|
|
+
|
|
|
+ for box in sorted_boxes:
|
|
|
+ bbox = box['bbox']
|
|
|
+ x_start = bbox[0]
|
|
|
+ x_end = bbox[2]
|
|
|
+
|
|
|
+ if current_cluster is None:
|
|
|
+ # 开始新簇
|
|
|
+ current_cluster = {
|
|
|
+ 'x_min': x_start,
|
|
|
+ 'x_max': x_end,
|
|
|
+ 'boxes': [box]
|
|
|
+ }
|
|
|
+ else:
|
|
|
+ # 检查是否属于当前簇
|
|
|
+ # 🔑 条件:x 坐标重叠或接近
|
|
|
+ overlap = not (x_start > current_cluster['x_max'] + x_tolerance or
|
|
|
+ x_end < current_cluster['x_min'] - x_tolerance)
|
|
|
+
|
|
|
+ if overlap or abs(x_start - current_cluster['x_min']) <= x_tolerance:
|
|
|
+ # 合并到当前簇
|
|
|
+ current_cluster['boxes'].append(box)
|
|
|
+ current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
|
|
|
+ current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
|
|
|
+ else:
|
|
|
+ # 保存当前簇,开始新簇
|
|
|
+ clusters.append(current_cluster)
|
|
|
+ current_cluster = {
|
|
|
+ 'x_min': x_start,
|
|
|
+ 'x_max': x_end,
|
|
|
+ 'boxes': [box]
|
|
|
+ }
|
|
|
+
|
|
|
+ # 添加最后一簇
|
|
|
+ if current_cluster:
|
|
|
+ clusters.append(current_cluster)
|
|
|
+
|
|
|
+ return clusters
|
|
|
+
|
|
|
+
|
|
|
+ def _merge_close_clusters(self, clusters: List[Dict],
|
|
|
+ target_count: int) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 合并相近的簇,直到数量等于目标列数
|
|
|
+
|
|
|
+ Args:
|
|
|
+ clusters: 聚类列表
|
|
|
+ target_count: 目标列数
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 合并后的聚类列表
|
|
|
+ """
|
|
|
+ if len(clusters) <= target_count:
|
|
|
+ return clusters
|
|
|
+
|
|
|
+ # 复制一份,避免修改原数据
|
|
|
+ working_clusters = [c.copy() for c in clusters]
|
|
|
+
|
|
|
+ while len(working_clusters) > target_count:
|
|
|
+ # 找到距离最近的两个簇
|
|
|
+ min_distance = float('inf')
|
|
|
+ merge_idx = 0
|
|
|
+
|
|
|
+ for i in range(len(working_clusters) - 1):
|
|
|
+ distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
|
|
|
+ if distance < min_distance:
|
|
|
+ min_distance = distance
|
|
|
+ merge_idx = i
|
|
|
+
|
|
|
+ # 合并
|
|
|
+ cluster1 = working_clusters[merge_idx]
|
|
|
+ cluster2 = working_clusters[merge_idx + 1]
|
|
|
+
|
|
|
+ merged_cluster = {
|
|
|
+ 'x_min': cluster1['x_min'],
|
|
|
+ 'x_max': cluster2['x_max'],
|
|
|
+ 'boxes': cluster1['boxes'] + cluster2['boxes']
|
|
|
+ }
|
|
|
+
|
|
|
+ # 替换
|
|
|
+ working_clusters[merge_idx] = merged_cluster
|
|
|
+ working_clusters.pop(merge_idx + 1)
|
|
|
+
|
|
|
+ return working_clusters
|
|
|
+
|
|
|
+
|
|
|
+ def _get_boxes_in_column(self, boxes: List[Dict],
|
|
|
+ boundaries: List[Tuple[int, int]],
|
|
|
+ col_idx: int) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 获取指定列范围内的 boxes(改进版:包含重叠)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ boxes: 当前行的所有 boxes
|
|
|
+ boundaries: 列边界
|
|
|
+ col_idx: 列索引
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 该列的 boxes
|
|
|
+ """
|
|
|
+ if col_idx >= len(boundaries):
|
|
|
+ return []
|
|
|
+
|
|
|
+ x_start, x_end = boundaries[col_idx]
|
|
|
+
|
|
|
+ col_boxes = []
|
|
|
+ for box in boxes:
|
|
|
+ bbox = box['bbox']
|
|
|
+ box_x_start = bbox[0]
|
|
|
+ box_x_end = bbox[2]
|
|
|
+
|
|
|
+ # 🔑 改进:检查是否有重叠(不只是中心点)
|
|
|
+ overlap = not (box_x_start > x_end or box_x_end < x_start)
|
|
|
+
|
|
|
+ if overlap:
|
|
|
+ col_boxes.append(box)
|
|
|
+
|
|
|
+ return col_boxes
|
|
|
+
|
|
|
+
|
|
|
+ def _match_and_merge_boxes_for_cell(self, cell_text: str,
|
|
|
+ col_boxes: List[Dict]) -> Optional[Dict]:
|
|
|
+ """
|
|
|
+ 匹配并合并单元格的多个 boxes
|
|
|
+
|
|
|
+ 策略:
|
|
|
+ 1. 尝试单个 box 精确匹配
|
|
|
+ 2. 如果失败,尝试合并多个 boxes
|
|
|
+
|
|
|
+ Args:
|
|
|
+ cell_text: HTML 单元格文本
|
|
|
+ col_boxes: 该列的候选 boxes
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ {'bbox': [x1,y1,x2,y2], 'text': str, 'score': float,
|
|
|
+ 'paddle_indices': [idx1, idx2], 'used_boxes': [box1, box2]}
|
|
|
+ """
|
|
|
+ from fuzzywuzzy import fuzz
|
|
|
+
|
|
|
+ cell_text_normalized = self.text_matcher.normalize_text(cell_text)
|
|
|
+
|
|
|
+ if len(cell_text_normalized) < 2:
|
|
|
+ return None
|
|
|
+
|
|
|
+ # 🔑 策略 1: 单个 box 精确匹配
|
|
|
+ for box in col_boxes:
|
|
|
+ if box.get('used'):
|
|
|
+ continue
|
|
|
+
|
|
|
+ box_text = self.text_matcher.normalize_text(box['text'])
|
|
|
+
|
|
|
+ if cell_text_normalized == box_text:
|
|
|
+ return {
|
|
|
+ 'bbox': box['bbox'],
|
|
|
+ 'text': box['text'],
|
|
|
+ 'score': box['score'],
|
|
|
+ 'paddle_indices': [box['paddle_bbox_index']],
|
|
|
+ 'used_boxes': [box]
|
|
|
+ }
|
|
|
+
|
|
|
+ # 🔑 策略 2: 多个 boxes 合并匹配
|
|
|
+ unused_boxes = [b for b in col_boxes if not b.get('used')]
|
|
|
+
|
|
|
+ if not unused_boxes:
|
|
|
+ return None
|
|
|
+
|
|
|
+ # 尝试不同的组合长度
|
|
|
+ for combo_len in range(1, min(len(unused_boxes) + 1, 5)):
|
|
|
+ # 按 y 坐标排序(上到下)
|
|
|
+ sorted_boxes = sorted(unused_boxes, key=lambda b: b['bbox'][1])
|
|
|
+
|
|
|
+ # 滑动窗口
|
|
|
+ for start_idx in range(len(sorted_boxes) - combo_len + 1):
|
|
|
+ combo_boxes = sorted_boxes[start_idx:start_idx + combo_len]
|
|
|
+
|
|
|
+ # 合并文本
|
|
|
+ merged_text = ''.join([b['text'] for b in combo_boxes])
|
|
|
+ merged_text_normalized = self.text_matcher.normalize_text(merged_text)
|
|
|
+
|
|
|
+ # 计算相似度
|
|
|
+ similarity = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
|
|
|
+
|
|
|
+ if similarity >= 85: # 高阈值
|
|
|
+ # 合并 bbox
|
|
|
+ merged_bbox = [
|
|
|
+ min(b['bbox'][0] for b in combo_boxes),
|
|
|
+ min(b['bbox'][1] for b in combo_boxes),
|
|
|
+ max(b['bbox'][2] for b in combo_boxes),
|
|
|
+ max(b['bbox'][3] for b in combo_boxes)
|
|
|
+ ]
|
|
|
+
|
|
|
+ return {
|
|
|
+ 'bbox': merged_bbox,
|
|
|
+ 'text': merged_text,
|
|
|
+ 'score': sum(b['score'] for b in combo_boxes) / len(combo_boxes),
|
|
|
+ 'paddle_indices': [b['paddle_bbox_index'] for b in combo_boxes],
|
|
|
+ 'used_boxes': combo_boxes
|
|
|
+ }
|
|
|
+
|
|
|
+ # 🔑 策略 3: 降级匹配(单个最佳)
|
|
|
+ best_box = None
|
|
|
+ best_score = 0
|
|
|
+
|
|
|
+ for box in unused_boxes:
|
|
|
+ box_text = self.text_matcher.normalize_text(box['text'])
|
|
|
+ score = fuzz.partial_ratio(cell_text_normalized, box_text)
|
|
|
+
|
|
|
+ if score > best_score:
|
|
|
+ best_score = score
|
|
|
+ best_box = box
|
|
|
+
|
|
|
+ if best_box and best_score >= 70:
|
|
|
+ return {
|
|
|
+ 'bbox': best_box['bbox'],
|
|
|
+ 'text': best_box['text'],
|
|
|
+ 'score': best_box['score'],
|
|
|
+ 'paddle_indices': [best_box['paddle_bbox_index']],
|
|
|
+ 'used_boxes': [best_box]
|
|
|
+ }
|
|
|
+
|
|
|
+ return None
|
|
|
+
|
|
|
+ def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
|
|
|
+ table_bbox: Optional[List[int]],
|
|
|
+ html: str) -> Tuple[List[Dict], List[int]]:
|
|
|
+ """
|
|
|
+ 筛选表格区域内的 paddle boxes
|
|
|
+
|
|
|
+ 策略:
|
|
|
+ 1. 如果有 table_bbox,使用边界框筛选(扩展边界)
|
|
|
+ 2. 如果没有 table_bbox,通过内容匹配推断区域
|
|
|
+
|
|
|
+ Args:
|
|
|
+ paddle_boxes: paddle OCR 结果
|
|
|
+ table_bbox: 表格边界框 [x1, y1, x2, y2]
|
|
|
+ html: HTML 内容(用于内容验证)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ (筛选后的 boxes, 实际表格边界框)
|
|
|
+ """
|
|
|
+ if not paddle_boxes:
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
+
|
|
|
+ # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
|
|
|
+ if table_bbox and len(table_bbox) == 4:
|
|
|
+ x1, y1, x2, y2 = table_bbox
|
|
|
+
|
|
|
+ # 扩展边界(考虑边框外的文本)
|
|
|
+ margin = 20
|
|
|
+ expanded_bbox = [
|
|
|
+ max(0, x1 - margin),
|
|
|
+ max(0, y1 - margin),
|
|
|
+ x2 + margin,
|
|
|
+ y2 + margin
|
|
|
+ ]
|
|
|
+
|
|
|
+ filtered = []
|
|
|
+ for box in paddle_boxes:
|
|
|
+ bbox = box['bbox']
|
|
|
+ box_center_x = (bbox[0] + bbox[2]) / 2
|
|
|
+ box_center_y = (bbox[1] + bbox[3]) / 2
|
|
|
+
|
|
|
+ # 中心点在扩展区域内
|
|
|
+ if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
|
|
|
+ expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
|
|
|
+ filtered.append(box)
|
|
|
+
|
|
|
+ if filtered:
|
|
|
+ # 计算实际边界框
|
|
|
+ actual_bbox = [
|
|
|
+ min(b['bbox'][0] for b in filtered),
|
|
|
+ min(b['bbox'][1] for b in filtered),
|
|
|
+ max(b['bbox'][2] for b in filtered),
|
|
|
+ max(b['bbox'][3] for b in filtered)
|
|
|
+ ]
|
|
|
+ return filtered, actual_bbox
|
|
|
+
|
|
|
+ # 🎯 策略 2: 通过内容匹配推断区域
|
|
|
+ print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
|
|
|
+
|
|
|
+ # 提取 HTML 中的所有文本
|
|
|
+ from bs4 import BeautifulSoup
|
|
|
+ soup = BeautifulSoup(html, 'html.parser')
|
|
|
+ html_texts = set()
|
|
|
+ for cell in soup.find_all(['td', 'th']):
|
|
|
+ text = cell.get_text(strip=True)
|
|
|
+ if text:
|
|
|
+ html_texts.add(self.text_matcher.normalize_text(text))
|
|
|
+
|
|
|
+ if not html_texts:
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
+
|
|
|
+ # 找出与 HTML 内容匹配的 boxes
|
|
|
+ matched_boxes = []
|
|
|
+ for box in paddle_boxes:
|
|
|
+ normalized_text = self.text_matcher.normalize_text(box['text'])
|
|
|
+
|
|
|
+ # 检查是否匹配
|
|
|
+ if any(normalized_text in ht or ht in normalized_text
|
|
|
+ for ht in html_texts):
|
|
|
+ matched_boxes.append(box)
|
|
|
+
|
|
|
+ if not matched_boxes:
|
|
|
+ # 🔑 降级:如果精确匹配失败,使用模糊匹配
|
|
|
+ print(" ℹ️ 精确匹配失败,尝试模糊匹配...")
|
|
|
+
|
|
|
+ from fuzzywuzzy import fuzz
|
|
|
+ for box in paddle_boxes:
|
|
|
+ normalized_text = self.text_matcher.normalize_text(box['text'])
|
|
|
+
|
|
|
+ for ht in html_texts:
|
|
|
+ similarity = fuzz.partial_ratio(normalized_text, ht)
|
|
|
+ if similarity >= 70: # 降低阈值
|
|
|
+ matched_boxes.append(box)
|
|
|
+ break
|
|
|
+
|
|
|
+ if matched_boxes:
|
|
|
+ # 计算边界框
|
|
|
+ actual_bbox = [
|
|
|
+ min(b['bbox'][0] for b in matched_boxes),
|
|
|
+ min(b['bbox'][1] for b in matched_boxes),
|
|
|
+ max(b['bbox'][2] for b in matched_boxes),
|
|
|
+ max(b['bbox'][3] for b in matched_boxes)
|
|
|
+ ]
|
|
|
+
|
|
|
+ # 🔑 扩展边界,包含可能遗漏的文本
|
|
|
+ margin = 30
|
|
|
+ expanded_bbox = [
|
|
|
+ max(0, actual_bbox[0] - margin),
|
|
|
+ max(0, actual_bbox[1] - margin),
|
|
|
+ actual_bbox[2] + margin,
|
|
|
+ actual_bbox[3] + margin
|
|
|
+ ]
|
|
|
+
|
|
|
+ # 重新筛选(包含边界上的文本)
|
|
|
+ final_filtered = []
|
|
|
+ for box in paddle_boxes:
|
|
|
+ bbox = box['bbox']
|
|
|
+ box_center_x = (bbox[0] + bbox[2]) / 2
|
|
|
+ box_center_y = (bbox[1] + bbox[3]) / 2
|
|
|
+
|
|
|
+ if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
|
|
|
+ expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
|
|
|
+ final_filtered.append(box)
|
|
|
+
|
|
|
+ return final_filtered, actual_bbox
|
|
|
+
|
|
|
+ # 🔑 最后的降级:返回所有 boxes
|
|
|
+ print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes")
|
|
|
+ if paddle_boxes:
|
|
|
+ actual_bbox = [
|
|
|
+ min(b['bbox'][0] for b in paddle_boxes),
|
|
|
+ min(b['bbox'][1] for b in paddle_boxes),
|
|
|
+ max(b['bbox'][2] for b in paddle_boxes),
|
|
|
+ max(b['bbox'][3] for b in paddle_boxes)
|
|
|
+ ]
|
|
|
+ return paddle_boxes, actual_bbox
|
|
|
+
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
+
|
|
|
+ def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict],
|
|
|
+ y_tolerance: int = 20) -> List[Dict]:
|
|
|
+ """
|
|
|
+ 将 paddle_text_boxes 按 y 坐标分组(聚类)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ paddle_boxes: Paddle OCR 文字框列表
|
|
|
+ y_tolerance: Y 坐标容忍度(像素)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
|
|
|
+ """
|
|
|
+ if not paddle_boxes:
|
|
|
+ return []
|
|
|
+
|
|
|
+ # 计算每个 box 的中心 y 坐标
|
|
|
+ boxes_with_y = []
|
|
|
+ for box in paddle_boxes:
|
|
|
+ bbox = box['bbox']
|
|
|
+ y_center = (bbox[1] + bbox[3]) / 2
|
|
|
+ boxes_with_y.append({
|
|
|
+ 'y_center': y_center,
|
|
|
+ 'box': box
|
|
|
+ })
|
|
|
+
|
|
|
+ # 按 y 坐标排序
|
|
|
+ boxes_with_y.sort(key=lambda x: x['y_center'])
|
|
|
+
|
|
|
+ # 聚类
|
|
|
+ groups = []
|
|
|
+ current_group = None
|
|
|
+
|
|
|
+ for item in boxes_with_y:
|
|
|
+ if current_group is None:
|
|
|
+ # 开始新组
|
|
|
+ current_group = {
|
|
|
+ 'y_center': item['y_center'],
|
|
|
+ 'boxes': [item['box']]
|
|
|
+ }
|
|
|
+ else:
|
|
|
+ # 检查是否属于当前组
|
|
|
+ if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
|
|
|
+ current_group['boxes'].append(item['box'])
|
|
|
+ # 更新组的中心(使用平均值)
|
|
|
+ current_group['y_center'] = sum(
|
|
|
+ b['bbox'][1] + b['bbox'][3] for b in current_group['boxes']
|
|
|
+ ) / (2 * len(current_group['boxes']))
|
|
|
+ else:
|
|
|
+ # 保存当前组,开始新组
|
|
|
+ groups.append(current_group)
|
|
|
+ current_group = {
|
|
|
+ 'y_center': item['y_center'],
|
|
|
+ 'boxes': [item['box']]
|
|
|
+ }
|
|
|
+
|
|
|
+ # 添加最后一组
|
|
|
+ if current_group:
|
|
|
+ groups.append(current_group)
|
|
|
+
|
|
|
+ return groups
|
|
|
+
|
|
|
+
|
|
|
+ def _find_best_match_in_group(self, target_text: str, boxes: List[Dict],
|
|
|
+ start_idx: int = 0) -> Optional[Dict]:
|
|
|
+ """
|
|
|
+ 在给定的 boxes 列表中查找最佳匹配(已按 x 坐标排序)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ target_text: 目标文本
|
|
|
+ boxes: 候选 boxes(已排序)
|
|
|
+ start_idx: 起始索引
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ 最佳匹配的 box 或 None
|
|
|
+ """
|
|
|
+ target_text = self.text_matcher.normalize_text(target_text)
|
|
|
+
|
|
|
+ if len(target_text) < 2:
|
|
|
+ return None
|
|
|
+
|
|
|
+ best_match = None
|
|
|
+ best_score = 0
|
|
|
+
|
|
|
+ # 优先从 start_idx 开始查找
|
|
|
+ search_range = list(range(start_idx, len(boxes))) + list(range(0, start_idx))
|
|
|
+
|
|
|
+ for idx in search_range:
|
|
|
+ box = boxes[idx]
|
|
|
+
|
|
|
+ if box.get('used'):
|
|
|
+ continue
|
|
|
+
|
|
|
+ box_text = self.text_matcher.normalize_text(box['text'])
|
|
|
+
|
|
|
+ # 精确匹配
|
|
|
+ if target_text == box_text:
|
|
|
+ return box
|
|
|
+
|
|
|
+ # 长度比例检查
|
|
|
+ length_ratio = min(len(target_text), len(box_text)) / max(len(target_text), len(box_text))
|
|
|
+ if length_ratio < 0.35:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 子串检查
|
|
|
+ shorter = target_text if len(target_text) < len(box_text) else box_text
|
|
|
+ longer = box_text if len(target_text) < len(box_text) else target_text
|
|
|
+ is_substring = shorter in longer
|
|
|
+
|
|
|
+ # 计算相似度
|
|
|
+ from fuzzywuzzy import fuzz
|
|
|
+ partial_ratio = fuzz.partial_ratio(target_text, box_text)
|
|
|
+ if is_substring:
|
|
|
+ partial_ratio += 10
|
|
|
+
|
|
|
+ if partial_ratio >= self.text_matcher.similarity_threshold:
|
|
|
+ if partial_ratio > best_score:
|
|
|
+ best_score = partial_ratio
|
|
|
+ best_match = box
|
|
|
+
|
|
|
+ return best_match
|
|
|
+
|
|
|
+ def _match_html_rows_to_paddle_groups(self, html_rows: List,
|
|
|
+ grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
|
|
|
+ """
|
|
|
+ 智能匹配 HTML 行与 paddle 分组(改进版:处理跨行文本)
|
|
|
+
|
|
|
+ 策略:
|
|
|
+ 1. 第一遍:基于内容精确匹配
|
|
|
+ 2. 第二遍:将未使用的组合并到相邻已匹配的行
|
|
|
+ """
|
|
|
+ if not html_rows or not grouped_boxes:
|
|
|
+ return {}
|
|
|
+
|
|
|
+ mapping = {}
|
|
|
+
|
|
|
+ # 🎯 策略 1: 数量相等,简单 1:1 映射
|
|
|
+ if len(html_rows) == len(grouped_boxes):
|
|
|
+ for i in range(len(html_rows)):
|
|
|
+ mapping[i] = [i]
|
|
|
+ return mapping
|
|
|
+
|
|
|
+ # 🎯 策略 2: 第一遍 - 基于内容精确匹配
|
|
|
+ used_groups = set()
|
|
|
+
|
|
|
+ for row_idx, row in enumerate(html_rows):
|
|
|
+ row_texts = [cell.get_text(strip=True) for cell in row.find_all(['td', 'th'])]
|
|
|
+ row_texts = [t for t in row_texts if t]
|
|
|
+
|
|
|
+ if not row_texts:
|
|
|
+ mapping[row_idx] = []
|
|
|
+ continue
|
|
|
+
|
|
|
+ row_text_normalized = [self.text_matcher.normalize_text(t) for t in row_texts]
|
|
|
+
|
|
|
+ # 查找最匹配的 paddle 组
|
|
|
+ best_groups = []
|
|
|
+ best_score = 0
|
|
|
+
|
|
|
+ # 尝试匹配单个组
|
|
|
+ for group_idx, group in enumerate(grouped_boxes):
|
|
|
+ if group_idx in used_groups:
|
|
|
+ continue
|
|
|
+
|
|
|
+ group_texts = [self.text_matcher.normalize_text(b['text'])
|
|
|
+ for b in group['boxes'] if not b.get('used')]
|
|
|
+
|
|
|
+ match_count = sum(1 for rt in row_text_normalized
|
|
|
+ if any(rt in gt or gt in rt for gt in group_texts))
|
|
|
+
|
|
|
+ coverage = match_count / len(row_texts) if row_texts else 0
|
|
|
+
|
|
|
+ if coverage > best_score:
|
|
|
+ best_score = coverage
|
|
|
+ best_groups = [group_idx]
|
|
|
+
|
|
|
+ # 🔑 如果单组匹配度不高,尝试匹配多个连续组
|
|
|
+ if best_score < 0.5:
|
|
|
+ # 从当前位置向后查找
|
|
|
+ start_group = min([g for g in range(len(grouped_boxes)) if g not in used_groups],
|
|
|
+ default=0)
|
|
|
+ combined_texts = []
|
|
|
+ combined_groups = []
|
|
|
+
|
|
|
+ for group_idx in range(start_group, min(start_group + 5, len(grouped_boxes))):
|
|
|
+ if group_idx in used_groups:
|
|
|
+ continue
|
|
|
+
|
|
|
+ combined_groups.append(group_idx)
|
|
|
+ combined_texts.extend([
|
|
|
+ self.text_matcher.normalize_text(b['text'])
|
|
|
+ for b in grouped_boxes[group_idx]['boxes']
|
|
|
+ if not b.get('used')
|
|
|
+ ])
|
|
|
+
|
|
|
+ match_count = sum(1 for rt in row_text_normalized
|
|
|
+ if any(rt in gt or gt in rt for gt in combined_texts))
|
|
|
+ coverage = match_count / len(row_texts) if row_texts else 0
|
|
|
+
|
|
|
+ if coverage > best_score:
|
|
|
+ best_score = coverage
|
|
|
+ best_groups = combined_groups.copy()
|
|
|
+
|
|
|
+ # 记录映射
|
|
|
+ if best_groups and best_score > 0.3:
|
|
|
+ mapping[row_idx] = best_groups
|
|
|
+ used_groups.update(best_groups)
|
|
|
+ else:
|
|
|
+ # 降级策略:位置推测
|
|
|
+ estimated_group = min(row_idx, len(grouped_boxes) - 1)
|
|
|
+ if estimated_group not in used_groups:
|
|
|
+ mapping[row_idx] = [estimated_group]
|
|
|
+ used_groups.add(estimated_group)
|
|
|
+ else:
|
|
|
+ mapping[row_idx] = []
|
|
|
+
|
|
|
+ # 🎯 策略 3: 第二遍 - 处理未使用的组(关键!)
|
|
|
+ unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
|
|
|
+
|
|
|
+ if unused_groups:
|
|
|
+ print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
|
|
|
+
|
|
|
+ # 🔑 将未使用的组合并到相邻的已匹配行
|
|
|
+ for unused_idx in unused_groups:
|
|
|
+ # 策略:合并到最近的上方或下方已匹配行
|
|
|
+
|
|
|
+ # 1. 查找该组的 y 坐标
|
|
|
+ unused_y = grouped_boxes[unused_idx]['y_center']
|
|
|
+
|
|
|
+ # 2. 找到最近的已使用组
|
|
|
+ closest_used_idx = None
|
|
|
+ min_distance = float('inf')
|
|
|
+
|
|
|
+ for used_idx in sorted(used_groups):
|
|
|
+ distance = abs(grouped_boxes[used_idx]['y_center'] - unused_y)
|
|
|
+ if distance < min_distance:
|
|
|
+ min_distance = distance
|
|
|
+ closest_used_idx = used_idx
|
|
|
+
|
|
|
+ if closest_used_idx is not None:
|
|
|
+ # 3. 找到该组对应的 HTML 行
|
|
|
+ target_html_row = None
|
|
|
+ for html_row_idx, group_indices in mapping.items():
|
|
|
+ if closest_used_idx in group_indices:
|
|
|
+ target_html_row = html_row_idx
|
|
|
+ break
|
|
|
+
|
|
|
+ if target_html_row is not None:
|
|
|
+ # 4. 判断合并方向(基于 y 坐标)
|
|
|
+ if unused_y < grouped_boxes[closest_used_idx]['y_center']:
|
|
|
+ # 未使用组在上方,可能是上一行的跨列文本
|
|
|
+ if target_html_row > 0:
|
|
|
+ # 合并到上一行
|
|
|
+ if target_html_row - 1 in mapping:
|
|
|
+ if unused_idx not in mapping[target_html_row - 1]:
|
|
|
+ mapping[target_html_row - 1].append(unused_idx)
|
|
|
+ print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row - 1}(上方)")
|
|
|
+ else:
|
|
|
+ # 合并到当前行
|
|
|
+ if unused_idx not in mapping[target_html_row]:
|
|
|
+ mapping[target_html_row].append(unused_idx)
|
|
|
+ print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(当前)")
|
|
|
+ else:
|
|
|
+ # 未使用组在下方,可能是当前行的跨列文本
|
|
|
+ if unused_idx not in mapping[target_html_row]:
|
|
|
+ mapping[target_html_row].append(unused_idx)
|
|
|
+ print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(下方)")
|
|
|
+
|
|
|
+ used_groups.add(unused_idx)
|
|
|
+
|
|
|
+ # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
|
|
|
+ for row_idx in mapping:
|
|
|
+ if mapping[row_idx]:
|
|
|
+ mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
|
|
|
+
|
|
|
+ return mapping
|