ソースを参照

Refactor code structure for improved readability and maintainability

zhch158_admin 1 日 前
コミット
039ee93c22
2 ファイル変更1819 行追加0 行削除
  1. 495 0
      merger/data_processor_v1.py
  2. 1324 0
      merger/data_processor_v2.py

+ 495 - 0
merger/data_processor_v1.py

@@ -0,0 +1,495 @@
+"""
+数据处理模块
+负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
+"""
+from typing import List, Dict, Tuple
+from bs4 import BeautifulSoup
+
+try:
+    from .text_matcher import TextMatcher
+    from .bbox_extractor import BBoxExtractor
+except ImportError:
+    from text_matcher import TextMatcher
+    from bbox_extractor import BBoxExtractor
+
+
+class DataProcessor:
+    """数据处理器"""
+    
+    def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10):
+        """
+        Args:
+            text_matcher: 文本匹配器
+            look_ahead_window: 向前查找窗口
+        """
+        self.text_matcher = text_matcher
+        self.look_ahead_window = look_ahead_window
+    
+    def process_mineru_data(self, mineru_data: List[Dict], 
+                           paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        处理 MinerU 数据,添加 bbox 信息
+        
+        Args:
+            mineru_data: MinerU 数据
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            合并后的数据, table cell使用paddle的bbox,其他类型只是移动指针,bbox还是沿用minerU的bbox
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+
+        # 按 bbox 排序
+        mineru_data.sort(
+            key=lambda x: (x['bbox'][1], x['bbox'][0]) 
+            if 'bbox' in x else (float('inf'), float('inf'))
+        )
+
+        for item in mineru_data:
+            item_type = item.get('type', '')
+            
+            if item_type == 'table':
+                merged_item, paddle_pointer = self._process_table(
+                    item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type in ['text', 'title']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                merged_data.append(item.copy())
+        
+        return merged_data
+    
+    def process_dotsocr_data(self, dotsocr_data: List[Dict],
+                            paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        🎯 处理 DotsOCR 数据,转换为 MinerU 格式并添加 bbox 信息
+        
+        Args:
+            dotsocr_data: DotsOCR 数据
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            MinerU 格式的合并数据
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+        
+        # 按 bbox 排序
+        dotsocr_data.sort(
+            key=lambda x: (x['bbox'][1], x['bbox'][0])
+            if 'bbox' in x else (float('inf'), float('inf'))
+        )
+        
+        for item in dotsocr_data:
+            # 🎯 转换为 MinerU 格式
+            mineru_item = self._convert_dotsocr_to_mineru(item)
+            category = mineru_item.get('type', '')
+            
+            # 🎯 根据类型处理
+            if category.lower() == 'table':
+                merged_item, paddle_pointer = self._process_dotsocr_table(
+                    mineru_item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif category.lower() in ['text', 'title', 'header', 'footer']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif category.lower() == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                # Page-header, Page-footer, Picture 等
+                merged_data.append(mineru_item)
+        
+        return merged_data
+    
+    def _convert_dotsocr_to_mineru(self, dotsocr_item: Dict) -> Dict:
+        """
+        🎯 将 DotsOCR 格式转换为 MinerU 格式
+        
+        DotsOCR:
+        {
+            "category": "Table",
+            "bbox": [x1, y1, x2, y2],
+            "text": "..."
+        }
+        
+        MinerU:
+        {
+            "type": "table",
+            "bbox": [x1, y1, x2, y2],
+            "table_body": "...",
+            "page_idx": 0
+        }
+        """
+        category = dotsocr_item.get('category', '')
+        
+        # 🎯 Category 映射
+        category_map = {
+            'Page-header': 'header',
+            'Page-footer': 'footer',
+            'Picture': 'image',
+            'Figure': 'image',
+            'Section-header': 'title',
+            'Table': 'table',
+            'Text': 'text',
+            'Title': 'title',
+            'List': 'list',
+            'Caption': 'title'
+        }
+        
+        mineru_type = category_map.get(category, 'text')
+        
+        # 🎯 基础转换
+        mineru_item = {
+            'type': mineru_type,
+            'bbox': dotsocr_item.get('bbox', []),
+            'page_idx': 0  # DotsOCR 默认单页
+        }
+        
+        # 🎯 处理文本内容
+        text = dotsocr_item.get('text', '')
+        
+        if mineru_type == 'table':
+            # 表格:text -> table_body
+            mineru_item['table_body'] = text
+        else:
+            # 其他类型:保持 text
+            mineru_item['text'] = text
+            
+            # 标题级别
+            if category == 'Section-header':
+                mineru_item['text_level'] = 1
+        
+        return mineru_item
+    
+    def _process_dotsocr_table(self, item: Dict, paddle_text_boxes: List[Dict],
+                              start_pointer: int) -> Tuple[Dict, int]:
+        """
+        🎯 处理 DotsOCR 表格(已转换为 MinerU 格式)
+        
+        DotsOCR 的表格 HTML 已经在 text 字段中,需要转移到 table_body
+        """
+        merged_item = item.copy()
+        table_html = item.get('table_body', '')
+        
+        if not table_html:
+            return merged_item, start_pointer
+        
+        # 🎯 复用表格处理逻辑
+        enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
+            table_html, paddle_text_boxes, start_pointer
+        )
+        
+        merged_item['table_body'] = enhanced_html
+        merged_item['table_body_with_bbox'] = enhanced_html
+        merged_item['bbox_mapping'] = 'merged_from_paddle_ocr'
+        merged_item['table_cells'] = cells if cells else []
+        
+        return merged_item, new_pointer
+    
+    def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
+                                  paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        处理 PaddleOCR_VL 数据,添加 bbox 信息
+        
+        Args:
+            paddleocr_vl_data: PaddleOCR_VL 数据 (JSON 对象)
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            🎯 MinerU 格式的合并数据(统一输出格式)
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+        
+        # 🎯 获取旋转角度和原始图像尺寸
+        rotation_angle = self._get_rotation_angle_from_vl(paddleocr_vl_data)
+        orig_image_size = None
+        
+        if rotation_angle != 0:
+            orig_image_size = self._get_original_image_size_from_vl(paddleocr_vl_data)
+            print(f"🔄 PaddleOCR_VL 检测到旋转角度: {rotation_angle}°")
+            print(f"📐 原始图像尺寸: {orig_image_size[0]} x {orig_image_size[1]}")
+        
+        # 提取 parsing_res_list
+        parsing_res_list = paddleocr_vl_data.get('parsing_res_list', [])
+        
+        # 按 bbox 排序
+        parsing_res_list.sort(
+            key=lambda x: (x['block_bbox'][1], x['block_bbox'][0])
+            if 'block_bbox' in x else (float('inf'), float('inf'))
+        )
+        
+        for item in parsing_res_list:
+            # 🎯 先转换 bbox 坐标(如果需要)
+            if rotation_angle != 0 and orig_image_size:
+                item = self._transform_vl_block_bbox(item, rotation_angle, orig_image_size)
+            
+            # 🎯 统一转换为 MinerU 格式
+            mineru_item = self._convert_paddleocr_vl_to_mineru(item)
+            item_type = mineru_item.get('type', '')
+            
+            # 🎯 根据类型处理(复用 MinerU 的通用方法)
+            if item_type == 'table':
+                merged_item, paddle_pointer = self._process_table(
+                    mineru_item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type in ['text', 'title', 'header', 'footer', 'equation']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                # 其他类型(image 等)直接添加
+                merged_data.append(mineru_item)
+        
+        return merged_data
+    
+    def _get_rotation_angle_from_vl(self, paddleocr_vl_data: Dict) -> float:
+        """从 PaddleOCR_VL 数据中获取旋转角度"""
+        return BBoxExtractor._get_rotation_angle(paddleocr_vl_data)
+    
+    def _get_original_image_size_from_vl(self, paddleocr_vl_data: Dict) -> tuple:
+        """从 PaddleOCR_VL 数据中获取原始图像尺寸"""
+        return BBoxExtractor._get_original_image_size(paddleocr_vl_data)
+    
+    def _transform_vl_block_bbox(self, item: Dict, angle: float, 
+                                 orig_image_size: tuple) -> Dict:
+        """
+        转换 PaddleOCR_VL 的 block_bbox 坐标
+        
+        Args:
+            item: PaddleOCR_VL 的 block 数据
+            angle: 旋转角度
+            orig_image_size: 原始图像尺寸
+        
+        Returns:
+            转换后的 block 数据
+        """
+        transformed_item = item.copy()
+        
+        if 'block_bbox' not in item:
+            return transformed_item
+        
+        block_bbox = item['block_bbox']
+        if len(block_bbox) < 4:
+            return transformed_item
+        
+        # block_bbox 格式: [x1, y1, x2, y2]
+        # 转换为 poly 格式进行旋转
+        poly = [
+            [block_bbox[0], block_bbox[1]],  # 左上
+            [block_bbox[2], block_bbox[1]],  # 右上
+            [block_bbox[2], block_bbox[3]],  # 右下
+            [block_bbox[0], block_bbox[3]]   # 左下
+        ]
+        
+        # 🎯 使用 BBoxExtractor 的坐标转换方法
+        transformed_poly = BBoxExtractor._inverse_rotate_coordinates(
+            poly, angle, orig_image_size
+        )
+        
+        # 转换回 bbox 格式
+        xs = [p[0] for p in transformed_poly]
+        ys = [p[1] for p in transformed_poly]
+        transformed_bbox = [min(xs), min(ys), max(xs), max(ys)]
+        
+        transformed_item['block_bbox'] = transformed_bbox
+        
+        return transformed_item
+    
+    def _convert_paddleocr_vl_to_mineru(self, paddleocr_vl_item: Dict) -> Dict:
+        """
+        🎯 将 PaddleOCR_VL 格式转换为 MinerU 格式
+        
+        基于 PP-DocLayout_plus-L 的 20 种类别
+        """
+        block_label = paddleocr_vl_item.get('block_label', '')
+        
+        # 🎯 PP-DocLayout_plus-L 类别映射(共 20 种)
+        label_map = {
+            # 标题类(3种)
+            'paragraph_title': 'title',
+            'doc_title': 'title',
+            'figure_table_chart_title': 'title',
+            
+            # 文本类(9种)
+            'text': 'text',
+            'number': 'text',
+            'content': 'text',
+            'abstract': 'text',
+            'footnote': 'text',
+            'aside_text': 'text',
+            'algorithm': 'text',
+            'reference': 'text',
+            'reference_content': 'text',
+            
+            # 页眉页脚(2种)
+            'header': 'header',
+            'footer': 'footer',
+            
+            # 表格(1种)
+            'table': 'table',
+            
+            # 图片/图表(3种)
+            'image': 'image',
+            'chart': 'image',
+            'seal': 'image',
+            
+            # 公式(2种)
+            'formula': 'equation',
+            'formula_number': 'equation'
+        }
+        
+        mineru_type = label_map.get(block_label, 'text')
+        
+        mineru_item = {
+            'type': mineru_type,
+            'bbox': paddleocr_vl_item.get('block_bbox', []),
+            'page_idx': 0
+        }
+        
+        content = paddleocr_vl_item.get('block_content', '')
+        
+        if mineru_type == 'table':
+            mineru_item['table_body'] = content
+        else:
+            mineru_item['text'] = content
+            
+            # 标题级别
+            if block_label == 'doc_title':
+                mineru_item['text_level'] = 1
+            elif block_label == 'paragraph_title':
+                mineru_item['text_level'] = 2
+            elif block_label == 'figure_table_chart_title':
+                mineru_item['text_level'] = 3
+        
+        return mineru_item
+    
+    def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
+                      start_pointer: int) -> Tuple[Dict, int]:
+        """处理 MinerU 表格"""
+        merged_item = item.copy()
+        table_html = item.get('table_body', '')
+        
+        enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
+            table_html, paddle_text_boxes, start_pointer
+        )
+        
+        merged_item['table_body'] = enhanced_html
+        merged_item['table_body_with_bbox'] = enhanced_html
+        merged_item['bbox_mapping'] = 'merged_from_paddle_ocr'
+        merged_item['table_cells'] = cells if cells else []
+        
+        return merged_item, new_pointer
+    
+    def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
+                     paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
+        """处理文本"""
+        merged_item = item.copy()
+        text = item.get('text', '')
+        
+        matched_bbox, paddle_pointer, last_matched_index = \
+            self.text_matcher.find_matching_bbox(
+                text, paddle_text_boxes, paddle_pointer, last_matched_index,
+                self.look_ahead_window
+            )
+        
+        if matched_bbox:
+            matched_bbox['used'] = True
+        
+        return merged_item, paddle_pointer, last_matched_index
+    
+    def _process_list(self, item: Dict, paddle_text_boxes: List[Dict],
+                     paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
+        """处理列表"""
+        merged_item = item.copy()
+        list_items = item.get('list_items', [])
+        
+        for list_item in list_items:
+            matched_bbox, paddle_pointer, last_matched_index = \
+                self.text_matcher.find_matching_bbox(
+                    list_item, paddle_text_boxes, paddle_pointer, last_matched_index,
+                    self.look_ahead_window
+                )
+            
+            if matched_bbox:
+                matched_bbox['used'] = True
+        
+        return merged_item, paddle_pointer, last_matched_index
+    
+    def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
+                                      start_pointer: int) -> Tuple[str, List[Dict], int]:
+        """为 HTML 表格添加 bbox 信息"""
+        soup = BeautifulSoup(html, 'html.parser')
+        current_pointer = start_pointer
+        last_matched_index = start_pointer
+        cells = []
+
+        for row_idx, row in enumerate(soup.find_all('tr')):
+            for col_idx, cell in enumerate(row.find_all(['td', 'th'])):
+                cell_text = cell.get_text(strip=True)
+                
+                if not cell_text:
+                    continue
+                
+                matched_bbox, current_pointer, last_matched_index = \
+                    self.text_matcher.find_matching_bbox(
+                        cell_text, paddle_text_boxes, current_pointer, 
+                        last_matched_index, self.look_ahead_window
+                    )
+                
+                if matched_bbox:
+                    bbox = matched_bbox['bbox']
+                    cell['data-bbox'] = f"[{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]}]"
+                    cell['data-score'] = f"{matched_bbox['score']:.4f}"
+                    cell['data-paddle-index'] = str(matched_bbox['paddle_bbox_index'])
+
+                    # ✅ 完整记录单元格信息
+                    cells.append({
+                        'type': 'table_cell',
+                        'text': cell_text,
+                        'bbox': bbox,
+                        'row': row_idx + 1,
+                        'col': col_idx + 1,
+                        'score': matched_bbox['score'],
+                        'paddle_bbox_index': matched_bbox['paddle_bbox_index']
+                    })
+                    
+                    matched_bbox['used'] = True
+                # ✅ 如果匹配失败,不应该添加到 cells 中
+    
+        return str(soup), cells, current_pointer

+ 1324 - 0
merger/data_processor_v2.py

@@ -0,0 +1,1324 @@
+"""
+数据处理模块
+负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
+"""
+from typing import List, Dict, Tuple, Optional
+from bs4 import BeautifulSoup
+
+try:
+    from .text_matcher import TextMatcher
+    from .bbox_extractor import BBoxExtractor
+except ImportError:
+    from text_matcher import TextMatcher
+    from bbox_extractor import BBoxExtractor
+
+
+class DataProcessor:
+    """数据处理器"""
+    
+    def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10):
+        """
+        Args:
+            text_matcher: 文本匹配器
+            look_ahead_window: 向前查找窗口
+        """
+        self.text_matcher = text_matcher
+        self.look_ahead_window = look_ahead_window
+    
+    def process_mineru_data(self, mineru_data: List[Dict], 
+                           paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        处理 MinerU 数据,添加 bbox 信息
+        
+        Args:
+            mineru_data: MinerU 数据
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            合并后的数据, table cell使用paddle的bbox,其他类型只是移动指针,bbox还是沿用minerU的bbox
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+
+        # 按 bbox 排序
+        mineru_data.sort(
+            key=lambda x: (x['bbox'][1], x['bbox'][0]) 
+            if 'bbox' in x else (float('inf'), float('inf'))
+        )
+
+        for item in mineru_data:
+            item_type = item.get('type', '')
+            
+            if item_type == 'table':
+                merged_item, paddle_pointer = self._process_table(
+                    item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type in ['text', 'title']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                merged_data.append(item.copy())
+        
+        return merged_data
+    
+    def process_dotsocr_data(self, dotsocr_data: List[Dict],
+                            paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        🎯 处理 DotsOCR 数据,转换为 MinerU 格式并添加 bbox 信息
+        
+        Args:
+            dotsocr_data: DotsOCR 数据
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            MinerU 格式的合并数据
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+        
+        # 按 bbox 排序
+        dotsocr_data.sort(
+            key=lambda x: (x['bbox'][1], x['bbox'][0])
+            if 'bbox' in x else (float('inf'), float('inf'))
+        )
+        
+        for item in dotsocr_data:
+            # 🎯 转换为 MinerU 格式
+            mineru_item = self._convert_dotsocr_to_mineru(item)
+            category = mineru_item.get('type', '')
+            
+            # 🎯 根据类型处理
+            if category.lower() == 'table':
+                merged_item, paddle_pointer = self._process_table(
+                    mineru_item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif category.lower() in ['text', 'title', 'header', 'footer']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif category.lower() == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                # Page-header, Page-footer, Picture 等
+                merged_data.append(mineru_item)
+        
+        return merged_data
+    
+    def _convert_dotsocr_to_mineru(self, dotsocr_item: Dict) -> Dict:
+        """
+        🎯 将 DotsOCR 格式转换为 MinerU 格式
+        
+        DotsOCR:
+        {
+            "category": "Table",
+            "bbox": [x1, y1, x2, y2],
+            "text": "..."
+        }
+        
+        MinerU:
+        {
+            "type": "table",
+            "bbox": [x1, y1, x2, y2],
+            "table_body": "...",
+            "page_idx": 0
+        }
+        """
+        category = dotsocr_item.get('category', '')
+        
+        # 🎯 Category 映射
+        category_map = {
+            'Page-header': 'header',
+            'Page-footer': 'footer',
+            'Picture': 'image',
+            'Figure': 'image',
+            'Section-header': 'title',
+            'Table': 'table',
+            'Text': 'text',
+            'Title': 'title',
+            'List': 'list',
+            'Caption': 'title'
+        }
+        
+        mineru_type = category_map.get(category, 'text')
+        
+        # 🎯 基础转换
+        mineru_item = {
+            'type': mineru_type,
+            'bbox': dotsocr_item.get('bbox', []),
+            'page_idx': 0  # DotsOCR 默认单页
+        }
+        
+        # 🎯 处理文本内容
+        text = dotsocr_item.get('text', '')
+        
+        if mineru_type == 'table':
+            # 表格:text -> table_body
+            mineru_item['table_body'] = text
+        else:
+            # 其他类型:保持 text
+            mineru_item['text'] = text
+            
+            # 标题级别
+            if category == 'Section-header':
+                mineru_item['text_level'] = 1
+        
+        return mineru_item
+    
+    def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
+                                  paddle_text_boxes: List[Dict]) -> List[Dict]:
+        """
+        处理 PaddleOCR_VL 数据,添加 bbox 信息
+        
+        Args:
+            paddleocr_vl_data: PaddleOCR_VL 数据 (JSON 对象)
+            paddle_text_boxes: PaddleOCR 文字框列表
+        
+        Returns:
+            🎯 MinerU 格式的合并数据(统一输出格式)
+        """
+        merged_data = []
+        paddle_pointer = 0
+        last_matched_index = 0
+        
+        # 🎯 获取旋转角度和原始图像尺寸
+        rotation_angle = self._get_rotation_angle_from_vl(paddleocr_vl_data)
+        orig_image_size = None
+        
+        if rotation_angle != 0:
+            orig_image_size = self._get_original_image_size_from_vl(paddleocr_vl_data)
+            print(f"🔄 PaddleOCR_VL 检测到旋转角度: {rotation_angle}°")
+            print(f"📐 原始图像尺寸: {orig_image_size[0]} x {orig_image_size[1]}")
+        
+        # 提取 parsing_res_list
+        parsing_res_list = paddleocr_vl_data.get('parsing_res_list', [])
+        
+        # 按 bbox 排序
+        parsing_res_list.sort(
+            key=lambda x: (x['block_bbox'][1], x['block_bbox'][0])
+            if 'block_bbox' in x else (float('inf'), float('inf'))
+        )
+        
+        for item in parsing_res_list:
+            # 🎯 先转换 bbox 坐标(如果需要)
+            if rotation_angle != 0 and orig_image_size:
+                item = self._transform_vl_block_bbox(item, rotation_angle, orig_image_size)
+            
+            # 🎯 统一转换为 MinerU 格式
+            mineru_item = self._convert_paddleocr_vl_to_mineru(item)
+            item_type = mineru_item.get('type', '')
+            
+            # 🎯 根据类型处理(复用 MinerU 的通用方法)
+            if item_type == 'table':
+                merged_item, paddle_pointer = self._process_table(
+                    mineru_item, paddle_text_boxes, paddle_pointer
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type in ['text', 'title', 'header', 'footer', 'equation']:
+                merged_item, paddle_pointer, last_matched_index = self._process_text(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            elif item_type == 'list':
+                merged_item, paddle_pointer, last_matched_index = self._process_list(
+                    mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
+                )
+                merged_data.append(merged_item)
+            
+            else:
+                # 其他类型(image 等)直接添加
+                merged_data.append(mineru_item)
+        
+        return merged_data
+    
+    def _get_rotation_angle_from_vl(self, paddleocr_vl_data: Dict) -> float:
+        """从 PaddleOCR_VL 数据中获取旋转角度"""
+        return BBoxExtractor._get_rotation_angle(paddleocr_vl_data)
+    
+    def _get_original_image_size_from_vl(self, paddleocr_vl_data: Dict) -> tuple:
+        """从 PaddleOCR_VL 数据中获取原始图像尺寸"""
+        return BBoxExtractor._get_original_image_size(paddleocr_vl_data)
+    
+    def _transform_vl_block_bbox(self, item: Dict, angle: float, 
+                                 orig_image_size: tuple) -> Dict:
+        """
+        转换 PaddleOCR_VL 的 block_bbox 坐标
+        
+        Args:
+            item: PaddleOCR_VL 的 block 数据
+            angle: 旋转角度
+            orig_image_size: 原始图像尺寸
+        
+        Returns:
+            转换后的 block 数据
+        """
+        transformed_item = item.copy()
+        
+        if 'block_bbox' not in item:
+            return transformed_item
+        
+        block_bbox = item['block_bbox']
+        if len(block_bbox) < 4:
+            return transformed_item
+        
+        # block_bbox 格式: [x1, y1, x2, y2]
+        # 转换为 poly 格式进行旋转
+        poly = [
+            [block_bbox[0], block_bbox[1]],  # 左上
+            [block_bbox[2], block_bbox[1]],  # 右上
+            [block_bbox[2], block_bbox[3]],  # 右下
+            [block_bbox[0], block_bbox[3]]   # 左下
+        ]
+        
+        # 🎯 使用 BBoxExtractor 的坐标转换方法
+        transformed_poly = BBoxExtractor._inverse_rotate_coordinates(
+            poly, angle, orig_image_size
+        )
+        
+        # 转换回 bbox 格式
+        xs = [p[0] for p in transformed_poly]
+        ys = [p[1] for p in transformed_poly]
+        transformed_bbox = [min(xs), min(ys), max(xs), max(ys)]
+        
+        transformed_item['block_bbox'] = transformed_bbox
+        
+        return transformed_item
+    
+    def _convert_paddleocr_vl_to_mineru(self, paddleocr_vl_item: Dict) -> Dict:
+        """
+        🎯 将 PaddleOCR_VL 格式转换为 MinerU 格式
+        
+        基于 PP-DocLayout_plus-L 的 20 种类别
+        """
+        block_label = paddleocr_vl_item.get('block_label', '')
+        
+        # 🎯 PP-DocLayout_plus-L 类别映射(共 20 种)
+        label_map = {
+            # 标题类(3种)
+            'paragraph_title': 'title',
+            'doc_title': 'title',
+            'figure_table_chart_title': 'title',
+            
+            # 文本类(9种)
+            'text': 'text',
+            'number': 'text',
+            'content': 'text',
+            'abstract': 'text',
+            'footnote': 'text',
+            'aside_text': 'text',
+            'algorithm': 'text',
+            'reference': 'text',
+            'reference_content': 'text',
+            
+            # 页眉页脚(2种)
+            'header': 'header',
+            'footer': 'footer',
+            
+            # 表格(1种)
+            'table': 'table',
+            
+            # 图片/图表(3种)
+            'image': 'image',
+            'chart': 'image',
+            'seal': 'image',
+            
+            # 公式(2种)
+            'formula': 'equation',
+            'formula_number': 'equation'
+        }
+        
+        mineru_type = label_map.get(block_label, 'text')
+        
+        mineru_item = {
+            'type': mineru_type,
+            'bbox': paddleocr_vl_item.get('block_bbox', []),
+            'page_idx': 0
+        }
+        
+        content = paddleocr_vl_item.get('block_content', '')
+        
+        if mineru_type == 'table':
+            mineru_item['table_body'] = content
+        else:
+            mineru_item['text'] = content
+            
+            # 标题级别
+            if block_label == 'doc_title':
+                mineru_item['text_level'] = 1
+            elif block_label == 'paragraph_title':
+                mineru_item['text_level'] = 2
+            elif block_label == 'figure_table_chart_title':
+                mineru_item['text_level'] = 3
+        
+        return mineru_item
+    
+    def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
+                  start_pointer: int) -> Tuple[Dict, int]:
+        """
+        处理表格类型(MinerU 格式)
+        
+        策略:
+        - 解析 HTML 表格
+        - 为每个单元格匹配 PaddleOCR 的 bbox
+        - 返回处理后的表格和新指针位置
+        """
+        table_body = item.get('table_body', '')
+        
+        if not table_body:
+            print(f"⚠️ 表格内容为空,跳过")
+            return item, start_pointer
+        
+        try:
+            # 🔑 传入 table_bbox 用于筛选
+            table_bbox = item.get('bbox')  # MinerU 提供的表格边界
+            
+            enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
+                table_body,
+                paddle_text_boxes,
+                start_pointer,
+                table_bbox  # ✅ 传入边界框
+            )
+            
+            # 更新 item
+            item['table_body'] = enhanced_html
+            item['table_cells'] = cells
+            
+            # 统计信息
+            matched_count = len(cells)
+            total_cells = len(BeautifulSoup(table_body, 'html.parser').find_all(['td', 'th']))
+            
+            print(f"   表格单元格: {matched_count}/{total_cells} 匹配")
+            
+            return item, new_pointer
+            
+        except Exception as e:
+            print(f"⚠️ 表格处理失败: {e}")
+            import traceback
+            traceback.print_exc()
+            return item, start_pointer
+        
+    def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
+                     paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
+        """处理文本"""
+        merged_item = item.copy()
+        text = item.get('text', '')
+        
+        matched_bbox, paddle_pointer, last_matched_index = \
+            self.text_matcher.find_matching_bbox(
+                text, paddle_text_boxes, paddle_pointer, last_matched_index,
+                self.look_ahead_window
+            )
+        
+        if matched_bbox:
+            matched_bbox['used'] = True
+        
+        return merged_item, paddle_pointer, last_matched_index
+    
+    def _process_list(self, item: Dict, paddle_text_boxes: List[Dict],
+                     paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
+        """处理列表"""
+        merged_item = item.copy()
+        list_items = item.get('list_items', [])
+        
+        for list_item in list_items:
+            matched_bbox, paddle_pointer, last_matched_index = \
+                self.text_matcher.find_matching_bbox(
+                    list_item, paddle_text_boxes, paddle_pointer, last_matched_index,
+                    self.look_ahead_window
+                )
+            
+            if matched_bbox:
+                matched_bbox['used'] = True
+        
+        return merged_item, paddle_pointer, last_matched_index
+    
+    def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
+                                  start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
+        """
+        为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
+        
+        策略:
+        1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
+        2. 将筛选后的 boxes 按行分组
+        3. 智能匹配 HTML 行与 paddle 行组
+        4. 在匹配的组内查找单元格
+    
+        Args:
+            html: HTML 表格
+            paddle_text_boxes: 全部 paddle OCR 结果
+            start_pointer: 开始位置
+            table_bbox: 表格边界框 [x1, y1, x2, y2]
+        """
+        soup = BeautifulSoup(html, 'html.parser')
+        cells = []
+        
+        # 🔑 第一步:筛选表格区域内的 paddle boxes
+        table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
+            paddle_text_boxes[start_pointer:],
+            table_bbox,
+            html
+        )
+        
+        if not table_region_boxes:
+            print(f"⚠️ 未在表格区域找到 paddle boxes")
+            return str(soup), cells, start_pointer
+        
+        print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
+        print(f"   边界: {actual_table_bbox}")
+        
+        # 🔑 第二步:将表格区域的 boxes 按行分组
+        grouped_boxes = self._group_paddle_boxes_by_rows(
+            table_region_boxes,
+            y_tolerance=20
+        )
+        
+        # 🔑 第三步:在每组内按 x 坐标排序
+        for group in grouped_boxes:
+            group['boxes'].sort(key=lambda x: x['bbox'][0])
+        
+        grouped_boxes.sort(key=lambda g: g['y_center'])
+        
+        print(f"   分组: {len(grouped_boxes)} 行")
+        
+        # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
+        html_rows = soup.find_all('tr')
+        row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
+        
+        print(f"   HTML行: {len(html_rows)} 行")
+        print(f"   映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
+        
+        # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
+        for row_idx, row in enumerate(html_rows):
+            group_indices = row_mapping.get(row_idx, [])
+            
+            if not group_indices:
+                continue
+            
+            # 合并多个组的 boxes
+            current_boxes = []
+            for group_idx in group_indices:
+                if group_idx < len(grouped_boxes):
+                    current_boxes.extend(grouped_boxes[group_idx]['boxes'])
+            
+            current_boxes.sort(key=lambda x: x['bbox'][0])
+            
+            # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
+            html_cells = row.find_all(['td', 'th'])
+            
+            if not html_cells:
+                continue
+            
+            # 🔑 预估列边界(基于 x 坐标分布)
+            col_boundaries = self._estimate_column_boundaries(
+                current_boxes, 
+                len(html_cells)
+            )
+            
+            print(f"   行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
+            
+            # 🔑 按列分配 boxes
+            for col_idx, cell in enumerate(html_cells):
+                cell_text = cell.get_text(strip=True)
+                
+                if not cell_text:
+                    continue
+                
+                # 🎯 获取该列范围内的所有 boxes
+                col_boxes = self._get_boxes_in_column(
+                    current_boxes,
+                    col_boundaries,
+                    col_idx
+                )
+                
+                if not col_boxes:
+                    continue
+                
+                # 🎯 尝试匹配并合并
+                matched_result = self._match_and_merge_boxes_for_cell(
+                    cell_text,
+                    col_boxes
+                )
+                
+                if matched_result:
+                    merged_bbox = matched_result['bbox']
+                    merged_text = matched_result['text']
+                    
+                    cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
+                    cell['data-score'] = f"{matched_result['score']:.4f}"
+                    cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
+                    
+                    cells.append({
+                        'type': 'table_cell',
+                        'text': cell_text,
+                        'matched_text': merged_text,
+                        'bbox': merged_bbox,
+                        'row': row_idx + 1,
+                        'col': col_idx + 1,
+                        'score': matched_result['score'],
+                        'paddle_bbox_indices': matched_result['paddle_indices']
+                    })
+                    
+                    # 标记已使用
+                    for box in matched_result['used_boxes']:
+                        box['used'] = True
+        
+        # 计算新的指针位置
+        used_count = sum(1 for box in table_region_boxes if box.get('used'))
+        new_pointer = start_pointer + used_count
+        
+        print(f"   匹配: {len(cells)} 个单元格")
+        
+        return str(soup), cells, new_pointer
+
+    def _estimate_column_boundaries(self, boxes: List[Dict], 
+                                    num_cols: int) -> List[Tuple[int, int]]:
+        """
+        估算列边界(改进版:处理同列多文本框)
+        
+        Args:
+            boxes: 当前行的所有 boxes(已按 x 排序)
+            num_cols: HTML 表格的列数
+        
+        Returns:
+            列边界列表 [(x_start, x_end), ...]
+        """
+        if not boxes:
+            return []
+        
+        # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
+        x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=10)
+        
+        print(f"      X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
+        
+        # 获取所有 x 坐标范围
+        x_min = min(cluster['x_min'] for cluster in x_clusters)
+        x_max = max(cluster['x_max'] for cluster in x_clusters)
+        
+        # 🎯 策略 1: 如果聚类数量与列数接近
+        if len(x_clusters) == num_cols:
+            # 直接使用聚类边界
+            boundaries = [(cluster['x_min'], cluster['x_max']) 
+                        for cluster in x_clusters]
+            return boundaries
+        
+        # # 🎯 策略 2: 聚类数少于列数(某些列没有文本)
+        # if len(x_clusters) < num_cols:
+        #     print(f"      ⚠️ 聚类数 {len(x_clusters)} < 列数 {num_cols},使用均分策略")
+            
+        #     # 使用聚类的间隙来推断缺失的列边界
+        #     cluster_centers = [(c['x_min'] + c['x_max']) / 2 for c in x_clusters]
+            
+        #     # 计算平均列宽
+        #     if len(cluster_centers) > 1:
+        #         avg_gap = (x_max - x_min) / (num_cols - 1)
+        #     else:
+        #         avg_gap = 100  # 默认列宽
+            
+        #     # 生成边界
+        #     boundaries = []
+        #     prev_x = x_min
+            
+        #     for i in range(num_cols):
+        #         if i < len(x_clusters):
+        #             # 使用实际聚类
+        #             boundaries.append((x_clusters[i]['x_min'], x_clusters[i]['x_max']))
+        #             prev_x = x_clusters[i]['x_max']
+        #         else:
+        #             # 推断缺失列
+        #             next_x = prev_x + avg_gap
+        #             boundaries.append((prev_x, next_x))
+        #             prev_x = next_x
+            
+        #     return boundaries
+        
+        # 🎯 策略 3: 聚类数多于列数(某些列有多个文本簇)
+        if len(x_clusters) > num_cols:
+            print(f"      ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
+            
+            # 合并相近的簇
+            merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
+            
+            boundaries = [(cluster['x_min'], cluster['x_max']) 
+                        for cluster in merged_clusters]
+            return boundaries
+        
+        return []
+
+
+    def _cluster_boxes_by_x(self, boxes: List[Dict], 
+                        x_tolerance: int = 50) -> List[Dict]:
+        """
+        按 x 坐标聚类(合并同列的多个文本框)
+        
+        Args:
+            boxes: 文本框列表
+            x_tolerance: X坐标容忍度
+        
+        Returns:
+            聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
+        """
+        if not boxes:
+            return []
+        
+        # 按左边界 x 坐标排序
+        sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
+        
+        clusters = []
+        current_cluster = None
+        
+        for box in sorted_boxes:
+            bbox = box['bbox']
+            x_start = bbox[0]
+            x_end = bbox[2]
+            
+            if current_cluster is None:
+                # 开始新簇
+                current_cluster = {
+                    'x_min': x_start,
+                    'x_max': x_end,
+                    'boxes': [box]
+                }
+            else:
+                # 检查是否属于当前簇
+                # 🔑 条件:x 坐标重叠或接近
+                overlap = not (x_start > current_cluster['x_max'] + x_tolerance or
+                            x_end < current_cluster['x_min'] - x_tolerance)
+                
+                if overlap or abs(x_start - current_cluster['x_min']) <= x_tolerance:
+                    # 合并到当前簇
+                    current_cluster['boxes'].append(box)
+                    current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
+                    current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
+                else:
+                    # 保存当前簇,开始新簇
+                    clusters.append(current_cluster)
+                    current_cluster = {
+                        'x_min': x_start,
+                        'x_max': x_end,
+                        'boxes': [box]
+                    }
+        
+        # 添加最后一簇
+        if current_cluster:
+            clusters.append(current_cluster)
+        
+        return clusters
+
+
+    def _merge_close_clusters(self, clusters: List[Dict], 
+                            target_count: int) -> List[Dict]:
+        """
+        合并相近的簇,直到数量等于目标列数
+        
+        Args:
+            clusters: 聚类列表
+            target_count: 目标列数
+        
+        Returns:
+            合并后的聚类列表
+        """
+        if len(clusters) <= target_count:
+            return clusters
+        
+        # 复制一份,避免修改原数据
+        working_clusters = [c.copy() for c in clusters]
+        
+        while len(working_clusters) > target_count:
+            # 找到距离最近的两个簇
+            min_distance = float('inf')
+            merge_idx = 0
+            
+            for i in range(len(working_clusters) - 1):
+                distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
+                if distance < min_distance:
+                    min_distance = distance
+                    merge_idx = i
+            
+            # 合并
+            cluster1 = working_clusters[merge_idx]
+            cluster2 = working_clusters[merge_idx + 1]
+            
+            merged_cluster = {
+                'x_min': cluster1['x_min'],
+                'x_max': cluster2['x_max'],
+                'boxes': cluster1['boxes'] + cluster2['boxes']
+            }
+            
+            # 替换
+            working_clusters[merge_idx] = merged_cluster
+            working_clusters.pop(merge_idx + 1)
+        
+        return working_clusters
+
+
+    def _get_boxes_in_column(self, boxes: List[Dict], 
+                            boundaries: List[Tuple[int, int]],
+                            col_idx: int) -> List[Dict]:
+        """
+        获取指定列范围内的 boxes(改进版:包含重叠)
+        
+        Args:
+            boxes: 当前行的所有 boxes
+            boundaries: 列边界
+            col_idx: 列索引
+        
+        Returns:
+            该列的 boxes
+        """
+        if col_idx >= len(boundaries):
+            return []
+        
+        x_start, x_end = boundaries[col_idx]
+        
+        col_boxes = []
+        for box in boxes:
+            bbox = box['bbox']
+            box_x_start = bbox[0]
+            box_x_end = bbox[2]
+            
+            # 🔑 改进:检查是否有重叠(不只是中心点)
+            overlap = not (box_x_start > x_end or box_x_end < x_start)
+            
+            if overlap:
+                col_boxes.append(box)
+        
+        return col_boxes
+
+
+    def _match_and_merge_boxes_for_cell(self, cell_text: str, 
+                                    col_boxes: List[Dict]) -> Optional[Dict]:
+        """
+        匹配并合并单元格的多个 boxes
+        
+        策略:
+        1. 尝试单个 box 精确匹配
+        2. 如果失败,尝试合并多个 boxes
+        
+        Args:
+            cell_text: HTML 单元格文本
+            col_boxes: 该列的候选 boxes
+        
+        Returns:
+            {'bbox': [x1,y1,x2,y2], 'text': str, 'score': float, 
+            'paddle_indices': [idx1, idx2], 'used_boxes': [box1, box2]}
+        """
+        from fuzzywuzzy import fuzz
+        
+        cell_text_normalized = self.text_matcher.normalize_text(cell_text)
+        
+        if len(cell_text_normalized) < 2:
+            return None
+        
+        # 🔑 策略 1: 单个 box 精确匹配
+        for box in col_boxes:
+            if box.get('used'):
+                continue
+            
+            box_text = self.text_matcher.normalize_text(box['text'])
+            
+            if cell_text_normalized == box_text:
+                return {
+                    'bbox': box['bbox'],
+                    'text': box['text'],
+                    'score': box['score'],
+                    'paddle_indices': [box['paddle_bbox_index']],
+                    'used_boxes': [box]
+                }
+        
+        # 🔑 策略 2: 多个 boxes 合并匹配
+        unused_boxes = [b for b in col_boxes if not b.get('used')]
+        
+        if not unused_boxes:
+            return None
+        
+        # 尝试不同的组合长度
+        for combo_len in range(1, min(len(unused_boxes) + 1, 5)):
+            # 按 y 坐标排序(上到下)
+            sorted_boxes = sorted(unused_boxes, key=lambda b: b['bbox'][1])
+            
+            # 滑动窗口
+            for start_idx in range(len(sorted_boxes) - combo_len + 1):
+                combo_boxes = sorted_boxes[start_idx:start_idx + combo_len]
+                
+                # 合并文本
+                merged_text = ''.join([b['text'] for b in combo_boxes])
+                merged_text_normalized = self.text_matcher.normalize_text(merged_text)
+                
+                # 计算相似度
+                similarity = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
+                
+                if similarity >= 85:  # 高阈值
+                    # 合并 bbox
+                    merged_bbox = [
+                        min(b['bbox'][0] for b in combo_boxes),
+                        min(b['bbox'][1] for b in combo_boxes),
+                        max(b['bbox'][2] for b in combo_boxes),
+                        max(b['bbox'][3] for b in combo_boxes)
+                    ]
+                    
+                    return {
+                        'bbox': merged_bbox,
+                        'text': merged_text,
+                        'score': sum(b['score'] for b in combo_boxes) / len(combo_boxes),
+                        'paddle_indices': [b['paddle_bbox_index'] for b in combo_boxes],
+                        'used_boxes': combo_boxes
+                    }
+        
+        # 🔑 策略 3: 降级匹配(单个最佳)
+        best_box = None
+        best_score = 0
+        
+        for box in unused_boxes:
+            box_text = self.text_matcher.normalize_text(box['text'])
+            score = fuzz.partial_ratio(cell_text_normalized, box_text)
+            
+            if score > best_score:
+                best_score = score
+                best_box = box
+        
+        if best_box and best_score >= 70:
+            return {
+                'bbox': best_box['bbox'],
+                'text': best_box['text'],
+                'score': best_box['score'],
+                'paddle_indices': [best_box['paddle_bbox_index']],
+                'used_boxes': [best_box]
+            }
+        
+        return None
+
+    def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
+                                  table_bbox: Optional[List[int]],
+                                  html: str) -> Tuple[List[Dict], List[int]]:
+        """
+        筛选表格区域内的 paddle boxes
+    
+        策略:
+        1. 如果有 table_bbox,使用边界框筛选(扩展边界)
+        2. 如果没有 table_bbox,通过内容匹配推断区域
+    
+        Args:
+            paddle_boxes: paddle OCR 结果
+            table_bbox: 表格边界框 [x1, y1, x2, y2]
+            html: HTML 内容(用于内容验证)
+    
+        Returns:
+            (筛选后的 boxes, 实际表格边界框)
+        """
+        if not paddle_boxes:
+            return [], [0, 0, 0, 0]
+        
+        # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
+        if table_bbox and len(table_bbox) == 4:
+            x1, y1, x2, y2 = table_bbox
+            
+            # 扩展边界(考虑边框外的文本)
+            margin = 20
+            expanded_bbox = [
+                max(0, x1 - margin),
+                max(0, y1 - margin),
+                x2 + margin,
+                y2 + margin
+            ]
+            
+            filtered = []
+            for box in paddle_boxes:
+                bbox = box['bbox']
+                box_center_x = (bbox[0] + bbox[2]) / 2
+                box_center_y = (bbox[1] + bbox[3]) / 2
+                
+                # 中心点在扩展区域内
+                if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
+                    expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
+                    filtered.append(box)
+            
+            if filtered:
+                # 计算实际边界框
+                actual_bbox = [
+                    min(b['bbox'][0] for b in filtered),
+                    min(b['bbox'][1] for b in filtered),
+                    max(b['bbox'][2] for b in filtered),
+                    max(b['bbox'][3] for b in filtered)
+                ]
+                return filtered, actual_bbox
+        
+        # 🎯 策略 2: 通过内容匹配推断区域
+        print("   ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
+        
+        # 提取 HTML 中的所有文本
+        from bs4 import BeautifulSoup
+        soup = BeautifulSoup(html, 'html.parser')
+        html_texts = set()
+        for cell in soup.find_all(['td', 'th']):
+            text = cell.get_text(strip=True)
+            if text:
+                html_texts.add(self.text_matcher.normalize_text(text))
+        
+        if not html_texts:
+            return [], [0, 0, 0, 0]
+        
+        # 找出与 HTML 内容匹配的 boxes
+        matched_boxes = []
+        for box in paddle_boxes:
+            normalized_text = self.text_matcher.normalize_text(box['text'])
+            
+            # 检查是否匹配
+            if any(normalized_text in ht or ht in normalized_text 
+                   for ht in html_texts):
+                matched_boxes.append(box)
+        
+        if not matched_boxes:
+            # 🔑 降级:如果精确匹配失败,使用模糊匹配
+            print("   ℹ️ 精确匹配失败,尝试模糊匹配...")
+            
+            from fuzzywuzzy import fuzz
+            for box in paddle_boxes:
+                normalized_text = self.text_matcher.normalize_text(box['text'])
+                
+                for ht in html_texts:
+                    similarity = fuzz.partial_ratio(normalized_text, ht)
+                    if similarity >= 70:  # 降低阈值
+                        matched_boxes.append(box)
+                        break
+    
+        if matched_boxes:
+            # 计算边界框
+            actual_bbox = [
+                min(b['bbox'][0] for b in matched_boxes),
+                min(b['bbox'][1] for b in matched_boxes),
+                max(b['bbox'][2] for b in matched_boxes),
+                max(b['bbox'][3] for b in matched_boxes)
+            ]
+            
+            # 🔑 扩展边界,包含可能遗漏的文本
+            margin = 30
+            expanded_bbox = [
+                max(0, actual_bbox[0] - margin),
+                max(0, actual_bbox[1] - margin),
+                actual_bbox[2] + margin,
+                actual_bbox[3] + margin
+            ]
+            
+            # 重新筛选(包含边界上的文本)
+            final_filtered = []
+            for box in paddle_boxes:
+                bbox = box['bbox']
+                box_center_x = (bbox[0] + bbox[2]) / 2
+                box_center_y = (bbox[1] + bbox[3]) / 2
+                
+                if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
+                    expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
+                    final_filtered.append(box)
+            
+            return final_filtered, actual_bbox
+        
+        # 🔑 最后的降级:返回所有 boxes
+        print("   ⚠️ 无法确定表格区域,使用所有 paddle boxes")
+        if paddle_boxes:
+            actual_bbox = [
+                min(b['bbox'][0] for b in paddle_boxes),
+                min(b['bbox'][1] for b in paddle_boxes),
+                max(b['bbox'][2] for b in paddle_boxes),
+                max(b['bbox'][3] for b in paddle_boxes)
+            ]
+            return paddle_boxes, actual_bbox
+        
+        return [], [0, 0, 0, 0]
+
+    def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict], 
+                                    y_tolerance: int = 20) -> List[Dict]:
+        """
+        将 paddle_text_boxes 按 y 坐标分组(聚类)
+        
+        Args:
+            paddle_boxes: Paddle OCR 文字框列表
+            y_tolerance: Y 坐标容忍度(像素)
+        
+        Returns:
+            分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
+        """
+        if not paddle_boxes:
+            return []
+        
+        # 计算每个 box 的中心 y 坐标
+        boxes_with_y = []
+        for box in paddle_boxes:
+            bbox = box['bbox']
+            y_center = (bbox[1] + bbox[3]) / 2
+            boxes_with_y.append({
+                'y_center': y_center,
+                'box': box
+            })
+        
+        # 按 y 坐标排序
+        boxes_with_y.sort(key=lambda x: x['y_center'])
+        
+        # 聚类
+        groups = []
+        current_group = None
+        
+        for item in boxes_with_y:
+            if current_group is None:
+                # 开始新组
+                current_group = {
+                    'y_center': item['y_center'],
+                    'boxes': [item['box']]
+                }
+            else:
+                # 检查是否属于当前组
+                if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
+                    current_group['boxes'].append(item['box'])
+                    # 更新组的中心(使用平均值)
+                    current_group['y_center'] = sum(
+                        b['bbox'][1] + b['bbox'][3] for b in current_group['boxes']
+                    ) / (2 * len(current_group['boxes']))
+                else:
+                    # 保存当前组,开始新组
+                    groups.append(current_group)
+                    current_group = {
+                        'y_center': item['y_center'],
+                        'boxes': [item['box']]
+                    }
+        
+        # 添加最后一组
+        if current_group:
+            groups.append(current_group)
+        
+        return groups
+
+
+    def _find_best_match_in_group(self, target_text: str, boxes: List[Dict],
+                                start_idx: int = 0) -> Optional[Dict]:
+        """
+        在给定的 boxes 列表中查找最佳匹配(已按 x 坐标排序)
+        
+        Args:
+            target_text: 目标文本
+            boxes: 候选 boxes(已排序)
+            start_idx: 起始索引
+        
+        Returns:
+            最佳匹配的 box 或 None
+        """
+        target_text = self.text_matcher.normalize_text(target_text)
+        
+        if len(target_text) < 2:
+            return None
+        
+        best_match = None
+        best_score = 0
+        
+        # 优先从 start_idx 开始查找
+        search_range = list(range(start_idx, len(boxes))) + list(range(0, start_idx))
+        
+        for idx in search_range:
+            box = boxes[idx]
+            
+            if box.get('used'):
+                continue
+            
+            box_text = self.text_matcher.normalize_text(box['text'])
+            
+            # 精确匹配
+            if target_text == box_text:
+                return box
+            
+            # 长度比例检查
+            length_ratio = min(len(target_text), len(box_text)) / max(len(target_text), len(box_text))
+            if length_ratio < 0.35:
+                continue
+            
+            # 子串检查
+            shorter = target_text if len(target_text) < len(box_text) else box_text
+            longer = box_text if len(target_text) < len(box_text) else target_text
+            is_substring = shorter in longer
+            
+            # 计算相似度
+            from fuzzywuzzy import fuzz
+            partial_ratio = fuzz.partial_ratio(target_text, box_text)
+            if is_substring:
+                partial_ratio += 10
+            
+            if partial_ratio >= self.text_matcher.similarity_threshold:
+                if partial_ratio > best_score:
+                    best_score = partial_ratio
+                    best_match = box
+        
+        return best_match
+
+    def _match_html_rows_to_paddle_groups(self, html_rows: List, 
+                                      grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
+        """
+        智能匹配 HTML 行与 paddle 分组(改进版:处理跨行文本)
+    
+        策略:
+        1. 第一遍:基于内容精确匹配
+        2. 第二遍:将未使用的组合并到相邻已匹配的行
+        """
+        if not html_rows or not grouped_boxes:
+            return {}
+        
+        mapping = {}
+        
+        # 🎯 策略 1: 数量相等,简单 1:1 映射
+        if len(html_rows) == len(grouped_boxes):
+            for i in range(len(html_rows)):
+                mapping[i] = [i]
+            return mapping
+        
+        # 🎯 策略 2: 第一遍 - 基于内容精确匹配
+        used_groups = set()
+        
+        for row_idx, row in enumerate(html_rows):
+            row_texts = [cell.get_text(strip=True) for cell in row.find_all(['td', 'th'])]
+            row_texts = [t for t in row_texts if t]
+            
+            if not row_texts:
+                mapping[row_idx] = []
+                continue
+            
+            row_text_normalized = [self.text_matcher.normalize_text(t) for t in row_texts]
+            
+            # 查找最匹配的 paddle 组
+            best_groups = []
+            best_score = 0
+            
+            # 尝试匹配单个组
+            for group_idx, group in enumerate(grouped_boxes):
+                if group_idx in used_groups:
+                    continue
+                
+                group_texts = [self.text_matcher.normalize_text(b['text']) 
+                              for b in group['boxes'] if not b.get('used')]
+                
+                match_count = sum(1 for rt in row_text_normalized 
+                                if any(rt in gt or gt in rt for gt in group_texts))
+                
+                coverage = match_count / len(row_texts) if row_texts else 0
+                
+                if coverage > best_score:
+                    best_score = coverage
+                    best_groups = [group_idx]
+            
+            # 🔑 如果单组匹配度不高,尝试匹配多个连续组
+            if best_score < 0.5:
+                # 从当前位置向后查找
+                start_group = min([g for g in range(len(grouped_boxes)) if g not in used_groups], 
+                                default=0)
+                combined_texts = []
+                combined_groups = []
+                
+                for group_idx in range(start_group, min(start_group + 5, len(grouped_boxes))):
+                    if group_idx in used_groups:
+                        continue
+                    
+                    combined_groups.append(group_idx)
+                    combined_texts.extend([
+                        self.text_matcher.normalize_text(b['text'])
+                        for b in grouped_boxes[group_idx]['boxes']
+                        if not b.get('used')
+                    ])
+                    
+                    match_count = sum(1 for rt in row_text_normalized
+                                    if any(rt in gt or gt in rt for gt in combined_texts))
+                    coverage = match_count / len(row_texts) if row_texts else 0
+                    
+                    if coverage > best_score:
+                        best_score = coverage
+                        best_groups = combined_groups.copy()
+        
+            # 记录映射
+            if best_groups and best_score > 0.3:
+                mapping[row_idx] = best_groups
+                used_groups.update(best_groups)
+            else:
+                # 降级策略:位置推测
+                estimated_group = min(row_idx, len(grouped_boxes) - 1)
+                if estimated_group not in used_groups:
+                    mapping[row_idx] = [estimated_group]
+                    used_groups.add(estimated_group)
+                else:
+                    mapping[row_idx] = []
+        
+        # 🎯 策略 3: 第二遍 - 处理未使用的组(关键!)
+        unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
+        
+        if unused_groups:
+            print(f"   ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
+            
+            # 🔑 将未使用的组合并到相邻的已匹配行
+            for unused_idx in unused_groups:
+                # 策略:合并到最近的上方或下方已匹配行
+                
+                # 1. 查找该组的 y 坐标
+                unused_y = grouped_boxes[unused_idx]['y_center']
+                
+                # 2. 找到最近的已使用组
+                closest_used_idx = None
+                min_distance = float('inf')
+                
+                for used_idx in sorted(used_groups):
+                    distance = abs(grouped_boxes[used_idx]['y_center'] - unused_y)
+                    if distance < min_distance:
+                        min_distance = distance
+                        closest_used_idx = used_idx
+                
+                if closest_used_idx is not None:
+                    # 3. 找到该组对应的 HTML 行
+                    target_html_row = None
+                    for html_row_idx, group_indices in mapping.items():
+                        if closest_used_idx in group_indices:
+                            target_html_row = html_row_idx
+                            break
+                    
+                    if target_html_row is not None:
+                        # 4. 判断合并方向(基于 y 坐标)
+                        if unused_y < grouped_boxes[closest_used_idx]['y_center']:
+                            # 未使用组在上方,可能是上一行的跨列文本
+                            if target_html_row > 0:
+                                # 合并到上一行
+                                if target_html_row - 1 in mapping:
+                                    if unused_idx not in mapping[target_html_row - 1]:
+                                        mapping[target_html_row - 1].append(unused_idx)
+                                        print(f"      • 组 {unused_idx} 合并到 HTML 行 {target_html_row - 1}(上方)")
+                            else:
+                                # 合并到当前行
+                                if unused_idx not in mapping[target_html_row]:
+                                    mapping[target_html_row].append(unused_idx)
+                                    print(f"      • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(当前)")
+                        else:
+                            # 未使用组在下方,可能是当前行的跨列文本
+                            if unused_idx not in mapping[target_html_row]:
+                                mapping[target_html_row].append(unused_idx)
+                                print(f"      • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(下方)")
+                
+                used_groups.add(unused_idx)
+        
+        # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
+        for row_idx in mapping:
+            if mapping[row_idx]:
+                mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
+        
+        return mapping