Explorar el Código

feat: 增加 x 轴容差参数,优化表格处理逻辑并增强文本框匹配能力

zhch158_admin hace 1 día
padre
commit
596205c535
Se han modificado 1 ficheros con 857 adiciones y 66 borrados
  1. 857 66
      merger/data_processor.py

+ 857 - 66
merger/data_processor.py

@@ -2,7 +2,7 @@
 数据处理模块
 负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
 """
-from typing import List, Dict, Tuple
+from typing import List, Dict, Tuple, Optional
 from bs4 import BeautifulSoup
 
 try:
@@ -16,14 +16,17 @@ except ImportError:
 class DataProcessor:
     """数据处理器"""
     
-    def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10):
+    def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10, x_tolerance: int = 3):
         """
         Args:
             text_matcher: 文本匹配器
             look_ahead_window: 向前查找窗口
+            x_tolerance: x轴容差
         """
         self.text_matcher = text_matcher
         self.look_ahead_window = look_ahead_window
+        # X轴容差, 用于判断文本框是否在同一列
+        self.x_tolerance = x_tolerance
     
     def process_mineru_data(self, mineru_data: List[Dict], 
                            paddle_text_boxes: List[Dict]) -> List[Dict]:
@@ -102,7 +105,7 @@ class DataProcessor:
             
             # 🎯 根据类型处理
             if category.lower() == 'table':
-                merged_item, paddle_pointer = self._process_dotsocr_table(
+                merged_item, paddle_pointer = self._process_table(
                     mineru_item, paddle_text_boxes, paddle_pointer
                 )
                 merged_data.append(merged_item)
@@ -185,31 +188,6 @@ class DataProcessor:
         
         return mineru_item
     
-    def _process_dotsocr_table(self, item: Dict, paddle_text_boxes: List[Dict],
-                              start_pointer: int) -> Tuple[Dict, int]:
-        """
-        🎯 处理 DotsOCR 表格(已转换为 MinerU 格式)
-        
-        DotsOCR 的表格 HTML 已经在 text 字段中,需要转移到 table_body
-        """
-        merged_item = item.copy()
-        table_html = item.get('table_body', '')
-        
-        if not table_html:
-            return merged_item, start_pointer
-        
-        # 🎯 复用表格处理逻辑
-        enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
-            table_html, paddle_text_boxes, start_pointer
-        )
-        
-        merged_item['table_body'] = enhanced_html
-        merged_item['table_body_with_bbox'] = enhanced_html
-        merged_item['bbox_mapping'] = 'merged_from_paddle_ocr'
-        merged_item['table_cells'] = cells if cells else []
-        
-        return merged_item, new_pointer
-    
     def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
                                   paddle_text_boxes: List[Dict]) -> List[Dict]:
         """
@@ -400,22 +378,50 @@ class DataProcessor:
         return mineru_item
     
     def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
-                      start_pointer: int) -> Tuple[Dict, int]:
-        """处理 MinerU 表格"""
-        merged_item = item.copy()
-        table_html = item.get('table_body', '')
+                  start_pointer: int) -> Tuple[Dict, int]:
+        """
+        处理表格类型(MinerU 格式)
         
-        enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
-            table_html, paddle_text_boxes, start_pointer
-        )
+        策略:
+        - 解析 HTML 表格
+        - 为每个单元格匹配 PaddleOCR 的 bbox
+        - 返回处理后的表格和新指针位置
+        """
+        table_body = item.get('table_body', '')
         
-        merged_item['table_body'] = enhanced_html
-        merged_item['table_body_with_bbox'] = enhanced_html
-        merged_item['bbox_mapping'] = 'merged_from_paddle_ocr'
-        merged_item['table_cells'] = cells if cells else []
+        if not table_body:
+            print(f"⚠️ 表格内容为空,跳过")
+            return item, start_pointer
+        
+        try:
+            # 🔑 传入 table_bbox 用于筛选
+            table_bbox = item.get('bbox')  # MinerU 提供的表格边界
+            
+            enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
+                table_body,
+                paddle_text_boxes,
+                start_pointer,
+                table_bbox  # ✅ 传入边界框
+            )
+            
+            # 更新 item
+            item['table_body'] = enhanced_html
+            item['table_cells'] = cells
+            
+            # 统计信息
+            matched_count = len(cells)
+            total_cells = len(BeautifulSoup(table_body, 'html.parser').find_all(['td', 'th']))
+            
+            print(f"   表格单元格: {matched_count}/{total_cells} 匹配")
+            
+            return item, new_pointer
+            
+        except Exception as e:
+            print(f"⚠️ 表格处理失败: {e}")
+            import traceback
+            traceback.print_exc()
+            return item, start_pointer
         
-        return merged_item, new_pointer
-    
     def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
                      paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
         """处理文本"""
@@ -452,44 +458,829 @@ class DataProcessor:
         return merged_item, paddle_pointer, last_matched_index
     
     def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
-                                      start_pointer: int) -> Tuple[str, List[Dict], int]:
-        """为 HTML 表格添加 bbox 信息"""
+                                  start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
+        """
+        为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
+        
+        策略:
+        1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
+        2. 将筛选后的 boxes 按行分组
+        3. 智能匹配 HTML 行与 paddle 行组
+        4. 在匹配的组内查找单元格
+    
+        Args:
+            html: HTML 表格
+            paddle_text_boxes: 全部 paddle OCR 结果
+            start_pointer: 开始位置
+            table_bbox: 表格边界框 [x1, y1, x2, y2]
+        """
         soup = BeautifulSoup(html, 'html.parser')
-        current_pointer = start_pointer
-        last_matched_index = start_pointer
         cells = []
-
-        for row_idx, row in enumerate(soup.find_all('tr')):
-            for col_idx, cell in enumerate(row.find_all(['td', 'th'])):
+        
+        # 🔑 第一步:筛选表格区域内的 paddle boxes
+        table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
+            paddle_text_boxes[start_pointer:],
+            table_bbox,
+            html
+        )
+        
+        if not table_region_boxes:
+            print(f"⚠️ 未在表格区域找到 paddle boxes")
+            return str(soup), cells, start_pointer
+        
+        print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
+        print(f"   边界: {actual_table_bbox}")
+        
+        # 🔑 第二步:将表格区域的 boxes 按行分组
+        grouped_boxes = self._group_paddle_boxes_by_rows(
+            table_region_boxes,
+            y_tolerance=20
+        )
+        
+        # 🔑 第三步:在每组内按 x 坐标排序
+        for group in grouped_boxes:
+            group['boxes'].sort(key=lambda x: x['bbox'][0])
+        
+        grouped_boxes.sort(key=lambda g: g['y_center'])
+        
+        print(f"   分组: {len(grouped_boxes)} 行")
+        
+        # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
+        html_rows = soup.find_all('tr')
+        row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
+        
+        print(f"   HTML行: {len(html_rows)} 行")
+        print(f"   映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
+        
+        # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
+        for row_idx, row in enumerate(html_rows):
+            group_indices = row_mapping.get(row_idx, [])
+            
+            if not group_indices:
+                continue
+            
+            # 合并多个组的 boxes
+            current_boxes = []
+            for group_idx in group_indices:
+                if group_idx < len(grouped_boxes):
+                    current_boxes.extend(grouped_boxes[group_idx]['boxes'])
+            
+            current_boxes.sort(key=lambda x: x['bbox'][0])
+            
+            # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
+            html_cells = row.find_all(['td', 'th'])
+            
+            if not html_cells:
+                continue
+            
+            # 🔑 预估列边界(基于 x 坐标分布)
+            col_boundaries = self._estimate_column_boundaries(
+                current_boxes, 
+                len(html_cells)
+            )
+            
+            print(f"   行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
+            
+            # 🎯 关键改进:顺序指针匹配
+            box_pointer = 0  # 当前行的 boxes 指针
+            
+            for col_idx, cell in enumerate(html_cells):
                 cell_text = cell.get_text(strip=True)
                 
                 if not cell_text:
                     continue
                 
-                matched_bbox, current_pointer, last_matched_index = \
-                    self.text_matcher.find_matching_bbox(
-                        cell_text, paddle_text_boxes, current_pointer, 
-                        last_matched_index, self.look_ahead_window
-                    )
+                # 🔑 从当前指针开始匹配
+                matched_result = self._match_cell_sequential(
+                    cell_text,
+                    current_boxes,
+                    col_boundaries,
+                    box_pointer
+                )
                 
-                if matched_bbox:
-                    bbox = matched_bbox['bbox']
-                    cell['data-bbox'] = f"[{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]}]"
-                    cell['data-score'] = f"{matched_bbox['score']:.4f}"
-                    cell['data-paddle-index'] = str(matched_bbox['paddle_bbox_index'])
-
-                    # ✅ 完整记录单元格信息
+                if matched_result:
+                    merged_bbox = matched_result['bbox']
+                    merged_text = matched_result['text']
+                    
+                    cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
+                    cell['data-score'] = f"{matched_result['score']:.4f}"
+                    cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
+                    
                     cells.append({
                         'type': 'table_cell',
                         'text': cell_text,
-                        'bbox': bbox,
+                        'matched_text': merged_text,
+                        'bbox': merged_bbox,
                         'row': row_idx + 1,
                         'col': col_idx + 1,
-                        'score': matched_bbox['score'],
-                        'paddle_bbox_index': matched_bbox['paddle_bbox_index']
+                        'score': matched_result['score'],
+                        'paddle_bbox_indices': matched_result['paddle_indices']
                     })
                     
-                    matched_bbox['used'] = True
-                # ✅ 如果匹配失败,不应该添加到 cells 中
+                    # 标记已使用
+                    for box in matched_result['used_boxes']:
+                        box['used'] = True
+                    
+                    # 🎯 移动指针到最后使用的 box 之后
+                    box_pointer = matched_result['last_used_index'] + 1
+                    
+                    print(f"      列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})")
+        
+        # 计算新的指针位置
+        used_count = sum(1 for box in table_region_boxes if box.get('used'))
+        new_pointer = start_pointer + used_count
+        
+        print(f"   匹配: {len(cells)} 个单元格")
+        
+        return str(soup), cells, new_pointer
+
+
+    def _estimate_column_boundaries(self, boxes: List[Dict], 
+                                    num_cols: int) -> List[Tuple[int, int]]:
+        """
+        估算列边界(改进版:处理同列多文本框)
+        
+        Args:
+            boxes: 当前行的所有 boxes(已按 x 排序)
+            num_cols: HTML 表格的列数
+        
+        Returns:
+            列边界列表 [(x_start, x_end), ...]
+        """
+        if not boxes:
+            return []
+        
+        # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
+        x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance)
+        
+        print(f"      X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
+        
+        # 获取所有 x 坐标范围
+        x_min = min(cluster['x_min'] for cluster in x_clusters)
+        x_max = max(cluster['x_max'] for cluster in x_clusters)
+        
+        # 🎯 策略 1: 如果聚类数量<=列数接近
+        if len(x_clusters) <= num_cols:
+            # 直接使用聚类边界
+            boundaries = [(cluster['x_min'], cluster['x_max']) 
+                        for cluster in x_clusters]
+            return boundaries
+        
+        # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇)
+        if len(x_clusters) > num_cols:
+            print(f"      ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
+            
+            # 合并相近的簇
+            merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
+            
+            boundaries = [(cluster['x_min'], cluster['x_max']) 
+                        for cluster in merged_clusters]
+            return boundaries
+        
+        return []
+
+
+    def _cluster_boxes_by_x(self, boxes: List[Dict], 
+                    x_tolerance: int = 3) -> List[Dict]:
+        """
+        按 x 坐标聚类(合并同列的多个文本框)
+        
+        Args:
+            boxes: 文本框列表
+            x_tolerance: X坐标容忍度
+        
+        Returns:
+            聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
+        """
+        if not boxes:
+            return []
+        
+        # 按左边界 x 坐标排序
+        sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
+        
+        clusters = []
+        current_cluster = None
+        
+        for box in sorted_boxes:
+            bbox = box['bbox']
+            x_start = bbox[0]
+            x_end = bbox[2]
+            
+            if current_cluster is None:
+                # 开始新簇
+                current_cluster = {
+                    'x_min': x_start,
+                    'x_max': x_end,
+                    'boxes': [box]
+                }
+            else:
+                # 🔑 检查是否属于当前簇(修正后的逻辑)
+                # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min
+                # 2. 或者距离在容忍度内
+            
+                has_overlap = (x_start <= current_cluster['x_max'] and 
+                              x_end >= current_cluster['x_min'])
+            
+                is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance
+            
+                if has_overlap or is_close:
+                    # 合并到当前簇
+                    current_cluster['boxes'].append(box)
+                    current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
+                    current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
+                else:
+                    # 保存当前簇,开始新簇
+                    clusters.append(current_cluster)
+                    current_cluster = {
+                        'x_min': x_start,
+                        'x_max': x_end,
+                        'boxes': [box]
+                    }
+    
+        # 添加最后一簇
+        if current_cluster:
+            clusters.append(current_cluster)
+        
+        return clusters
+
+
+    def _merge_close_clusters(self, clusters: List[Dict], 
+                            target_count: int) -> List[Dict]:
+        """
+        合并相近的簇,直到数量等于目标列数
+        
+        Args:
+            clusters: 聚类列表
+            target_count: 目标列数
+        
+        Returns:
+            合并后的聚类列表
+        """
+        if len(clusters) <= target_count:
+            return clusters
+        
+        # 复制一份,避免修改原数据
+        working_clusters = [c.copy() for c in clusters]
+        
+        while len(working_clusters) > target_count:
+            # 找到距离最近的两个簇
+            min_distance = float('inf')
+            merge_idx = 0
+            
+            for i in range(len(working_clusters) - 1):
+                distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
+                if distance < min_distance:
+                    min_distance = distance
+                    merge_idx = i
+            
+            # 合并
+            cluster1 = working_clusters[merge_idx]
+            cluster2 = working_clusters[merge_idx + 1]
+            
+            merged_cluster = {
+                'x_min': cluster1['x_min'],
+                'x_max': cluster2['x_max'],
+                'boxes': cluster1['boxes'] + cluster2['boxes']
+            }
+            
+            # 替换
+            working_clusters[merge_idx] = merged_cluster
+            working_clusters.pop(merge_idx + 1)
+        
+        return working_clusters
+
+
+    def _get_boxes_in_column(self, boxes: List[Dict], 
+                            boundaries: List[Tuple[int, int]],
+                            col_idx: int) -> List[Dict]:
+        """
+        获取指定列范围内的 boxes(改进版:包含重叠)
+        
+        Args:
+            boxes: 当前行的所有 boxes
+            boundaries: 列边界
+            col_idx: 列索引
+        
+        Returns:
+            该列的 boxes
+        """
+        if col_idx >= len(boundaries):
+            return []
+        
+        x_start, x_end = boundaries[col_idx]
+        
+        col_boxes = []
+        for box in boxes:
+            bbox = box['bbox']
+            box_x_start = bbox[0]
+            box_x_end = bbox[2]
+            
+            # 🔑 改进:检查是否有重叠(不只是中心点)
+            overlap = not (box_x_start > x_end or box_x_end < x_start)
+            
+            if overlap:
+                col_boxes.append(box)
+        
+        return col_boxes
+
+
+    def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
+                                  table_bbox: Optional[List[int]],
+                                  html: str) -> Tuple[List[Dict], List[int]]:
+        """
+        筛选表格区域内的 paddle boxes
+    
+        策略:
+        1. 如果有 table_bbox,使用边界框筛选(扩展边界)
+        2. 如果没有 table_bbox,通过内容匹配推断区域
+    
+        Args:
+            paddle_boxes: paddle OCR 结果
+            table_bbox: 表格边界框 [x1, y1, x2, y2]
+            html: HTML 内容(用于内容验证)
+    
+        Returns:
+            (筛选后的 boxes, 实际表格边界框)
+        """
+        if not paddle_boxes:
+            return [], [0, 0, 0, 0]
+        
+        # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
+        if table_bbox and len(table_bbox) == 4:
+            x1, y1, x2, y2 = table_bbox
+            
+            # 扩展边界(考虑边框外的文本)
+            margin = 20
+            expanded_bbox = [
+                max(0, x1 - margin),
+                max(0, y1 - margin),
+                x2 + margin,
+                y2 + margin
+            ]
+            
+            filtered = []
+            for box in paddle_boxes:
+                bbox = box['bbox']
+                box_center_x = (bbox[0] + bbox[2]) / 2
+                box_center_y = (bbox[1] + bbox[3]) / 2
+                
+                # 中心点在扩展区域内
+                if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
+                    expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
+                    filtered.append(box)
+            
+            if filtered:
+                # 计算实际边界框
+                actual_bbox = [
+                    min(b['bbox'][0] for b in filtered),
+                    min(b['bbox'][1] for b in filtered),
+                    max(b['bbox'][2] for b in filtered),
+                    max(b['bbox'][3] for b in filtered)
+                ]
+                return filtered, actual_bbox
+        
+        # 🎯 策略 2: 通过内容匹配推断区域
+        print("   ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
+        
+        # 提取 HTML 中的所有文本
+        from bs4 import BeautifulSoup
+        soup = BeautifulSoup(html, 'html.parser')
+        html_texts = set()
+        for cell in soup.find_all(['td', 'th']):
+            text = cell.get_text(strip=True)
+            if text:
+                html_texts.add(self.text_matcher.normalize_text(text))
+        
+        if not html_texts:
+            return [], [0, 0, 0, 0]
+        
+        # 找出与 HTML 内容匹配的 boxes
+        matched_boxes = []
+        for box in paddle_boxes:
+            normalized_text = self.text_matcher.normalize_text(box['text'])
+            
+            # 检查是否匹配
+            if any(normalized_text in ht or ht in normalized_text 
+                   for ht in html_texts):
+                matched_boxes.append(box)
+        
+        if not matched_boxes:
+            # 🔑 降级:如果精确匹配失败,使用模糊匹配
+            print("   ℹ️ 精确匹配失败,尝试模糊匹配...")
+            
+            from fuzzywuzzy import fuzz
+            for box in paddle_boxes:
+                normalized_text = self.text_matcher.normalize_text(box['text'])
+                
+                for ht in html_texts:
+                    similarity = fuzz.partial_ratio(normalized_text, ht)
+                    if similarity >= 70:  # 降低阈值
+                        matched_boxes.append(box)
+                        break
     
-        return str(soup), cells, current_pointer
+        if matched_boxes:
+            # 计算边界框
+            actual_bbox = [
+                min(b['bbox'][0] for b in matched_boxes),
+                min(b['bbox'][1] for b in matched_boxes),
+                max(b['bbox'][2] for b in matched_boxes),
+                max(b['bbox'][3] for b in matched_boxes)
+            ]
+            
+            # 🔑 扩展边界,包含可能遗漏的文本
+            margin = 30
+            expanded_bbox = [
+                max(0, actual_bbox[0] - margin),
+                max(0, actual_bbox[1] - margin),
+                actual_bbox[2] + margin,
+                actual_bbox[3] + margin
+            ]
+            
+            # 重新筛选(包含边界上的文本)
+            final_filtered = []
+            for box in paddle_boxes:
+                bbox = box['bbox']
+                box_center_x = (bbox[0] + bbox[2]) / 2
+                box_center_y = (bbox[1] + bbox[3]) / 2
+                
+                if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
+                    expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
+                    final_filtered.append(box)
+            
+            return final_filtered, actual_bbox
+        
+        # 🔑 最后的降级:返回所有 boxes
+        print("   ⚠️ 无法确定表格区域,使用所有 paddle boxes")
+        if paddle_boxes:
+            actual_bbox = [
+                min(b['bbox'][0] for b in paddle_boxes),
+                min(b['bbox'][1] for b in paddle_boxes),
+                max(b['bbox'][2] for b in paddle_boxes),
+                max(b['bbox'][3] for b in paddle_boxes)
+            ]
+            return paddle_boxes, actual_bbox
+        
+        return [], [0, 0, 0, 0]
+
+    def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict], 
+                                    y_tolerance: int = 20) -> List[Dict]:
+        """
+        将 paddle_text_boxes 按 y 坐标分组(聚类)
+        
+        Args:
+            paddle_boxes: Paddle OCR 文字框列表
+            y_tolerance: Y 坐标容忍度(像素)
+        
+        Returns:
+            分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
+        """
+        if not paddle_boxes:
+            return []
+        
+        # 计算每个 box 的中心 y 坐标
+        boxes_with_y = []
+        for box in paddle_boxes:
+            bbox = box['bbox']
+            y_center = (bbox[1] + bbox[3]) / 2
+            boxes_with_y.append({
+                'y_center': y_center,
+                'box': box
+            })
+        
+        # 按 y 坐标排序
+        boxes_with_y.sort(key=lambda x: x['y_center'])
+        
+        # 聚类
+        groups = []
+        current_group = None
+        
+        for item in boxes_with_y:
+            if current_group is None:
+                # 开始新组
+                current_group = {
+                    'y_center': item['y_center'],
+                    'boxes': [item['box']]
+                }
+            else:
+                # 检查是否属于当前组
+                if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
+                    current_group['boxes'].append(item['box'])
+                    # 更新组的中心(使用平均值)
+                    current_group['y_center'] = sum(
+                        b['bbox'][1] + b['bbox'][3] for b in current_group['boxes']
+                    ) / (2 * len(current_group['boxes']))
+                else:
+                    # 保存当前组,开始新组
+                    groups.append(current_group)
+                    current_group = {
+                        'y_center': item['y_center'],
+                        'boxes': [item['box']]
+                    }
+        
+        # 添加最后一组
+        if current_group:
+            groups.append(current_group)
+        
+        return groups
+
+
+    def _match_html_rows_to_paddle_groups(self, html_rows: List, 
+                                      grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
+        """
+        智能匹配 HTML 行与 paddle 分组(改进版:处理跨行文本)
+
+        策略:
+        1. 第一遍:基于内容精确匹配
+        2. 第二遍:将未使用的组合并到相邻已匹配的行
+        """
+        if not html_rows or not grouped_boxes:
+            return {}
+        
+        mapping = {}
+        
+        # 🎯 策略 1: 数量相等,简单 1:1 映射
+        if len(html_rows) == len(grouped_boxes):
+            for i in range(len(html_rows)):
+                mapping[i] = [i]
+            return mapping
+        
+        # 🎯 策略 2: 第一遍 - 基于内容精确匹配
+        used_groups = set()
+        
+        for row_idx, row in enumerate(html_rows):
+            row_texts = [cell.get_text(strip=True) for cell in row.find_all(['td', 'th'])]
+            row_texts = [t for t in row_texts if t]
+            
+            if not row_texts:
+                mapping[row_idx] = []
+                continue
+            
+            row_text_normalized = [self.text_matcher.normalize_text(t) for t in row_texts]
+            
+            # 查找最匹配的 paddle 组
+            best_groups = []
+            best_score = 0
+            
+            # 尝试匹配单个组
+            for group_idx, group in enumerate(grouped_boxes):
+                if group_idx in used_groups:
+                    continue
+                
+                group_texts = [self.text_matcher.normalize_text(b['text']) 
+                              for b in group['boxes'] if not b.get('used')]
+                
+                match_count = sum(1 for rt in row_text_normalized 
+                                if any(rt in gt or gt in rt for gt in group_texts))
+                
+                coverage = match_count / len(row_texts) if row_texts else 0
+                
+                if coverage > best_score:
+                    best_score = coverage
+                    best_groups = [group_idx]
+            
+            # 🔑 如果单组匹配度不高,尝试匹配多个连续组
+            if best_score < 0.5:
+                # 从当前位置向后查找
+                start_group = min([g for g in range(len(grouped_boxes)) if g not in used_groups], 
+                                default=0)
+                combined_texts = []
+                combined_groups = []
+                
+                for group_idx in range(start_group, min(start_group + 5, len(grouped_boxes))):
+                    if group_idx in used_groups:
+                        continue
+                    
+                    combined_groups.append(group_idx)
+                    combined_texts.extend([
+                        self.text_matcher.normalize_text(b['text'])
+                        for b in grouped_boxes[group_idx]['boxes']
+                        if not b.get('used')
+                    ])
+                    
+                    match_count = sum(1 for rt in row_text_normalized
+                                    if any(rt in gt or gt in rt for gt in combined_texts))
+                    coverage = match_count / len(row_texts) if row_texts else 0
+                    
+                    if coverage > best_score:
+                        best_score = coverage
+                        best_groups = combined_groups.copy()
+        
+            # 记录映射
+            if best_groups and best_score > 0.3:
+                mapping[row_idx] = best_groups
+                used_groups.update(best_groups)
+            else:
+                # 降级策略:位置推测
+                estimated_group = min(row_idx, len(grouped_boxes) - 1)
+                if estimated_group not in used_groups:
+                    mapping[row_idx] = [estimated_group]
+                    used_groups.add(estimated_group)
+                else:
+                    mapping[row_idx] = []
+        
+        # 🎯 策略 3: 第二遍 - 处理未使用的组(关键!)
+        unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
+        
+        if unused_groups:
+            print(f"   ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
+            
+            # 🔑 将未使用的组合并到相邻的已匹配行
+            for unused_idx in unused_groups:
+                # 🎯 关键改进:计算与相邻行的边界距离
+                unused_group = grouped_boxes[unused_idx]
+                unused_y_min = min(b['bbox'][1] for b in unused_group['boxes'])
+                unused_y_max = max(b['bbox'][3] for b in unused_group['boxes'])
+                
+                # 🔑 查找上方和下方最近的已使用组
+                above_idx = None
+                below_idx = None
+                above_distance = float('inf')
+                below_distance = float('inf')
+                
+                # 向上查找
+                for i in range(unused_idx - 1, -1, -1):
+                    if i in used_groups:
+                        above_idx = i
+                        # 🎯 边界距离:unused 的最小 y - above 的最大 y
+                        above_group = grouped_boxes[i]
+                        max_y_box = max(
+                            above_group['boxes'],
+                            key=lambda b: b['bbox'][3]
+                        )
+                        above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2
+                        above_distance = abs(unused_y_min - above_y_center)
+                        print(f"      • 组 {unused_idx} 与上方组 {i} 距离: {above_distance:.1f}px")
+                        break
+                
+                # 向下查找
+                for i in range(unused_idx + 1, len(grouped_boxes)):
+                    if i in used_groups:
+                        below_idx = i
+                        # 🎯 边界距离:below 的最小 y - unused 的最大 y
+                        below_group = grouped_boxes[i]
+                        min_y_box = min(
+                            below_group['boxes'],
+                            key=lambda b: b['bbox'][1]
+                        )
+                        below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2
+                        below_distance = abs(below_y_center - unused_y_max)
+                        print(f"      • 组 {unused_idx} 与下方组 {i} 距离: {below_distance:.1f}px")
+                        break
+                
+                # 🎯 选择距离更近的一侧
+                if above_idx is not None and below_idx is not None:
+                    # 都存在,选择距离更近的
+                    if above_distance < below_distance:
+                        closest_used_idx = above_idx
+                        merge_direction = "上方"
+                    else:
+                        closest_used_idx = below_idx
+                        merge_direction = "下方"
+                    print(f"      ✓ 组 {unused_idx} 选择合并到{merge_direction}组 {closest_used_idx}")
+                elif above_idx is not None:
+                    closest_used_idx = above_idx
+                    merge_direction = "上方"
+                elif below_idx is not None:
+                    closest_used_idx = below_idx
+                    merge_direction = "下方"
+                else:
+                    print(f"      ⚠️ 组 {unused_idx} 无相邻已使用组,跳过")
+                    continue
+                
+                # 🔑 找到该组对应的 HTML 行
+                target_html_row = None
+                for html_row_idx, group_indices in mapping.items():
+                    if closest_used_idx in group_indices:
+                        target_html_row = html_row_idx
+                        break
+                
+                if target_html_row is not None:
+                    # 🎯 根据合并方向决定目标行
+                    if merge_direction == "上方":
+                        # 合并到上方对应的 HTML 行
+                        if target_html_row in mapping:
+                            if unused_idx not in mapping[target_html_row]:
+                                mapping[target_html_row].append(unused_idx)
+                                print(f"      • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(上方行)")
+                    else:
+                        # 合并到下方对应的 HTML 行
+                        if target_html_row in mapping:
+                            if unused_idx not in mapping[target_html_row]:
+                                mapping[target_html_row].append(unused_idx)
+                                print(f"      • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(下方行)")
+                
+                used_groups.add(unused_idx)
+        
+        # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
+        for row_idx in mapping:
+            if mapping[row_idx]:
+                mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
+        
+        return mapping
+
+    def _match_cell_sequential(self, cell_text: str, 
+                            boxes: List[Dict],
+                            col_boundaries: List[Tuple[int, int]],
+                            start_idx: int) -> Optional[Dict]:
+        """
+        🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配
+        
+        策略:
+        1. 找到第一个未使用的 box
+        2. 尝试单个 box 精确匹配
+        3. 如果失败,尝试合并多个 boxes
+        
+        Args:
+            cell_text: HTML 单元格文本
+            boxes: 候选 boxes(已按 x 坐标排序)
+            col_boundaries: 列边界列表
+            start_idx: 起始索引
+        
+        Returns:
+            {'bbox': [x1,y1,x2,y2], 'text': str, 'score': float, 
+            'paddle_indices': [idx1, idx2], 'used_boxes': [box1, box2],
+            'last_used_index': int}
+        """
+        from fuzzywuzzy import fuzz
+        
+        cell_text_normalized = self.text_matcher.normalize_text(cell_text)
+        
+        if len(cell_text_normalized) < 2:
+            return None
+        
+        # 🔑 找到第一个未使用的 box
+        first_unused_idx = start_idx
+        while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'):
+            first_unused_idx += 1
+        
+        if first_unused_idx >= len(boxes):
+            return None
+
+        # 🔑 策略 1: 单个 box 精确匹配
+        for box in boxes[first_unused_idx:]:
+            if box.get('used'):
+                continue
+            
+            box_text = self.text_matcher.normalize_text(box['text'])
+            
+            if cell_text_normalized == box_text:
+                return self._build_match_result([box], box['text'], 100.0, boxes.index(box))
+        
+        # 🔑 策略 2: 多个 boxes 合并匹配
+        unused_boxes = [b for b in boxes if not b.get('used')]
+        # 合并同列的 boxes 合并
+        merged_bboxes = []
+        for col_idx in range(len(col_boundaries)):
+            combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx)
+            if len(combo_boxes) > 0:
+                sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0]))
+                merged_text = ''.join([b['text'] for b in sorted_combo])
+                merged_bboxes.append({
+                    'text': merged_text,
+                    'sorted_combo': sorted_combo
+                })
+
+        for box in merged_bboxes:
+            # 1. 精确匹配
+            merged_text_normalized = self.text_matcher.normalize_text(box['text'])
+            if cell_text_normalized == merged_text_normalized:
+                last_sort_idx = boxes.index(box['sorted_combo'][-1])
+                return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx)
+            
+            # 2. 子串匹配
+            is_substring = (cell_text_normalized in merged_text_normalized or 
+                        merged_text_normalized in cell_text_normalized)
+            
+            # 3. 模糊匹配
+            similarity = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
+            
+            # 🎯 子串匹配加分
+            if is_substring:
+                similarity = min(100, similarity + 10)
+            
+            if similarity >= self.text_matcher.similarity_threshold:
+                print(f"         ✓ 匹配成功: '{cell_text[:15]}' vs '{merged_text[:15]}' (相似度: {similarity})")
+                return self._build_match_result(box['sorted_combo'], box['text'], similarity, start_idx)
+        
+        print(f"         ✗ 匹配失败: '{cell_text[:15]}'")
+        return None
+
+
+    def _build_match_result(self, boxes: List[Dict], text: str, 
+                        score: float, last_index: int) -> Dict:
+        """构建匹配结果"""
+        merged_bbox = [
+            min(b['bbox'][0] for b in boxes),
+            min(b['bbox'][1] for b in boxes),
+            max(b['bbox'][2] for b in boxes),
+            max(b['bbox'][3] for b in boxes)
+        ]
+        
+        return {
+            'bbox': merged_bbox,
+            'text': text,
+            'score': score,
+            'paddle_indices': [b['paddle_bbox_index'] for b in boxes],
+            'used_boxes': boxes,
+            'last_used_index': last_index
+        }