|
@@ -0,0 +1,1173 @@
|
|
|
|
|
+"""
|
|
|
|
|
+表格单元格匹配器
|
|
|
|
|
+负责将 HTML 表格单元格与 PaddleOCR bbox 进行匹配
|
|
|
|
|
+"""
|
|
|
|
|
+from typing import List, Dict, Tuple, Optional
|
|
|
|
|
+from bs4 import BeautifulSoup
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+
|
|
|
|
|
+try:
|
|
|
|
|
+ from rapidfuzz import fuzz
|
|
|
|
|
+except ImportError:
|
|
|
|
|
+ from fuzzywuzzy import fuzz
|
|
|
|
|
+
|
|
|
|
|
+try:
|
|
|
|
|
+ from .text_matcher import TextMatcher
|
|
|
|
|
+ from .bbox_extractor import BBoxExtractor
|
|
|
|
|
+except ImportError:
|
|
|
|
|
+ from text_matcher import TextMatcher
|
|
|
|
|
+ from bbox_extractor import BBoxExtractor
|
|
|
|
|
+
|
|
|
|
|
+class TableCellMatcher:
|
|
|
|
|
+ """表格单元格匹配器"""
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self, text_matcher: TextMatcher,
|
|
|
|
|
+ x_tolerance: int = 3,
|
|
|
|
|
+ y_tolerance: int = 10,
|
|
|
|
|
+ inclination_threshold: float = 0.3):
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ text_matcher: 文本匹配器
|
|
|
|
|
+ x_tolerance: X轴容差(用于列边界判断)
|
|
|
|
|
+ y_tolerance: Y轴容差(用于行分组)
|
|
|
|
|
+ """
|
|
|
|
|
+ self.text_matcher = text_matcher
|
|
|
|
|
+ self.x_tolerance = x_tolerance
|
|
|
|
|
+ self.y_tolerance = y_tolerance
|
|
|
|
|
+ self.inclination_threshold = inclination_threshold # 倾斜校正阈值(度数)
|
|
|
|
|
+
|
|
|
|
|
+ def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
|
|
|
|
|
+ start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
|
|
|
|
|
+
|
|
|
|
|
+ 策略:
|
|
|
|
|
+ 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
|
|
|
|
|
+ 2. 将筛选后的 boxes 按行分组
|
|
|
|
|
+ 3. 智能匹配 HTML 行与 paddle 行组
|
|
|
|
|
+ 4. 在匹配的组内查找单元格
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ html: HTML 表格
|
|
|
|
|
+ paddle_text_boxes: 全部 paddle OCR 结果
|
|
|
|
|
+ start_pointer: 开始位置
|
|
|
|
|
+ table_bbox: 表格边界框 [x1, y1, x2, y2]
|
|
|
|
|
+ """
|
|
|
|
|
+ soup = BeautifulSoup(html, 'html.parser')
|
|
|
|
|
+ cells = []
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 第一步:筛选表格区域内的 paddle boxes
|
|
|
|
|
+ table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
|
|
|
|
|
+ paddle_text_boxes[start_pointer:],
|
|
|
|
|
+ table_bbox,
|
|
|
|
|
+ html
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if not table_region_boxes:
|
|
|
|
|
+ print(f"⚠️ 未在表格区域找到 paddle boxes")
|
|
|
|
|
+ return str(soup), cells, start_pointer
|
|
|
|
|
+
|
|
|
|
|
+ print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
|
|
|
|
|
+ print(f" 边界: {actual_table_bbox}")
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 第二步:将表格区域的 boxes 按行分组
|
|
|
|
|
+ grouped_boxes = self._group_paddle_boxes_by_rows(
|
|
|
|
|
+ table_region_boxes,
|
|
|
|
|
+ y_tolerance=self.y_tolerance,
|
|
|
|
|
+ auto_correct_skew=True,
|
|
|
|
|
+ inclination_threshold=self.inclination_threshold
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 第三步:在每组内按 x 坐标排序
|
|
|
|
|
+ for group in grouped_boxes:
|
|
|
|
|
+ group['boxes'].sort(key=lambda x: x['bbox'][0])
|
|
|
|
|
+
|
|
|
|
|
+ grouped_boxes.sort(key=lambda g: g['y_center'])
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 分组: {len(grouped_boxes)} 行")
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
|
|
|
|
|
+ html_rows = soup.find_all('tr')
|
|
|
|
|
+ row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
|
|
|
|
|
+
|
|
|
|
|
+ print(f" HTML行: {len(html_rows)} 行")
|
|
|
|
|
+ print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
|
|
|
|
|
+ for row_idx, row in enumerate(html_rows):
|
|
|
|
|
+ group_indices = row_mapping.get(row_idx, [])
|
|
|
|
|
+
|
|
|
|
|
+ if not group_indices:
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # 合并多个组的 boxes
|
|
|
|
|
+ current_boxes = []
|
|
|
|
|
+ for group_idx in group_indices:
|
|
|
|
|
+ if group_idx < len(grouped_boxes):
|
|
|
|
|
+ current_boxes.extend(grouped_boxes[group_idx]['boxes'])
|
|
|
|
|
+
|
|
|
|
|
+ current_boxes.sort(key=lambda x: x['bbox'][0])
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
|
|
|
|
|
+ html_cells = row.find_all(['td', 'th'])
|
|
|
|
|
+
|
|
|
|
|
+ if not html_cells:
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 预估列边界(基于 x 坐标分布)
|
|
|
|
|
+ col_boundaries = self._estimate_column_boundaries(
|
|
|
|
|
+ current_boxes,
|
|
|
|
|
+ len(html_cells)
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 关键改进:顺序指针匹配
|
|
|
|
|
+ box_pointer = 0 # 当前行的 boxes 指针
|
|
|
|
|
+
|
|
|
|
|
+ for col_idx, cell in enumerate(html_cells):
|
|
|
|
|
+ cell_text = cell.get_text(strip=True)
|
|
|
|
|
+
|
|
|
|
|
+ if not cell_text:
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 从当前指针开始匹配
|
|
|
|
|
+ matched_result = self._match_cell_sequential(
|
|
|
|
|
+ cell_text,
|
|
|
|
|
+ current_boxes,
|
|
|
|
|
+ col_boundaries,
|
|
|
|
|
+ box_pointer
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if matched_result:
|
|
|
|
|
+ merged_bbox = matched_result['bbox']
|
|
|
|
|
+ merged_text = matched_result['text']
|
|
|
|
|
+
|
|
|
|
|
+ cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
|
|
|
|
|
+ cell['data-score'] = f"{matched_result['score']:.4f}"
|
|
|
|
|
+ cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
|
|
|
|
|
+
|
|
|
|
|
+ cells.append({
|
|
|
|
|
+ 'type': 'table_cell',
|
|
|
|
|
+ 'text': cell_text,
|
|
|
|
|
+ 'matched_text': merged_text,
|
|
|
|
|
+ 'bbox': merged_bbox,
|
|
|
|
|
+ 'row': row_idx + 1,
|
|
|
|
|
+ 'col': col_idx + 1,
|
|
|
|
|
+ 'score': matched_result['score'],
|
|
|
|
|
+ 'paddle_bbox_indices': matched_result['paddle_indices']
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 标记已使用
|
|
|
|
|
+ for box in matched_result['used_boxes']:
|
|
|
|
|
+ box['used'] = True
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 移动指针到最后使用的 box 之后
|
|
|
|
|
+ box_pointer = matched_result['last_used_index'] + 1
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})")
|
|
|
|
|
+
|
|
|
|
|
+ # 计算新的指针位置
|
|
|
|
|
+ used_count = sum(1 for box in table_region_boxes if box.get('used'))
|
|
|
|
|
+ new_pointer = start_pointer + used_count
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 匹配: {len(cells)} 个单元格")
|
|
|
|
|
+
|
|
|
|
|
+ return str(soup), cells, new_pointer
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _estimate_column_boundaries(self, boxes: List[Dict],
|
|
|
|
|
+ num_cols: int) -> List[Tuple[int, int]]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 估算列边界(改进版:处理同列多文本框)
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ boxes: 当前行的所有 boxes(已按 x 排序)
|
|
|
|
|
+ num_cols: HTML 表格的列数
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 列边界列表 [(x_start, x_end), ...]
|
|
|
|
|
+ """
|
|
|
|
|
+ if not boxes:
|
|
|
|
|
+ return []
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
|
|
|
|
|
+ x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance)
|
|
|
|
|
+
|
|
|
|
|
+ print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
|
|
|
|
|
+
|
|
|
|
|
+ # 获取所有 x 坐标范围
|
|
|
|
|
+ x_min = min(cluster['x_min'] for cluster in x_clusters)
|
|
|
|
|
+ x_max = max(cluster['x_max'] for cluster in x_clusters)
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 1: 如果聚类数量<=列数接近
|
|
|
|
|
+ if len(x_clusters) <= num_cols:
|
|
|
|
|
+ # 直接使用聚类边界
|
|
|
|
|
+ boundaries = [(cluster['x_min'], cluster['x_max'])
|
|
|
|
|
+ for cluster in x_clusters]
|
|
|
|
|
+ return boundaries
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇)
|
|
|
|
|
+ if len(x_clusters) > num_cols:
|
|
|
|
|
+ print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
|
|
|
|
|
+
|
|
|
|
|
+ # 合并相近的簇
|
|
|
|
|
+ merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
|
|
|
|
|
+
|
|
|
|
|
+ boundaries = [(cluster['x_min'], cluster['x_max'])
|
|
|
|
|
+ for cluster in merged_clusters]
|
|
|
|
|
+ return boundaries
|
|
|
|
|
+
|
|
|
|
|
+ return []
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _cluster_boxes_by_x(self, boxes: List[Dict],
|
|
|
|
|
+ x_tolerance: int = 3) -> List[Dict]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 按 x 坐标聚类(合并同列的多个文本框)
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ boxes: 文本框列表
|
|
|
|
|
+ x_tolerance: X坐标容忍度
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
|
|
|
|
|
+ """
|
|
|
|
|
+ if not boxes:
|
|
|
|
|
+ return []
|
|
|
|
|
+
|
|
|
|
|
+ # 按左边界 x 坐标排序
|
|
|
|
|
+ sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
|
|
|
|
|
+
|
|
|
|
|
+ clusters = []
|
|
|
|
|
+ current_cluster = None
|
|
|
|
|
+
|
|
|
|
|
+ for box in sorted_boxes:
|
|
|
|
|
+ bbox = box['bbox']
|
|
|
|
|
+ x_start = bbox[0]
|
|
|
|
|
+ x_end = bbox[2]
|
|
|
|
|
+
|
|
|
|
|
+ if current_cluster is None:
|
|
|
|
|
+ # 开始新簇
|
|
|
|
|
+ current_cluster = {
|
|
|
|
|
+ 'x_min': x_start,
|
|
|
|
|
+ 'x_max': x_end,
|
|
|
|
|
+ 'boxes': [box]
|
|
|
|
|
+ }
|
|
|
|
|
+ else:
|
|
|
|
|
+ # 🔑 检查是否属于当前簇(修正后的逻辑)
|
|
|
|
|
+ # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min
|
|
|
|
|
+ # 2. 或者距离在容忍度内
|
|
|
|
|
+
|
|
|
|
|
+ has_overlap = (x_start <= current_cluster['x_max'] and
|
|
|
|
|
+ x_end >= current_cluster['x_min'])
|
|
|
|
|
+
|
|
|
|
|
+ is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance
|
|
|
|
|
+
|
|
|
|
|
+ if has_overlap or is_close:
|
|
|
|
|
+ # 合并到当前簇
|
|
|
|
|
+ current_cluster['boxes'].append(box)
|
|
|
|
|
+ current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
|
|
|
|
|
+ current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
|
|
|
|
|
+ else:
|
|
|
|
|
+ # 保存当前簇,开始新簇
|
|
|
|
|
+ clusters.append(current_cluster)
|
|
|
|
|
+ current_cluster = {
|
|
|
|
|
+ 'x_min': x_start,
|
|
|
|
|
+ 'x_max': x_end,
|
|
|
|
|
+ 'boxes': [box]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ # 添加最后一簇
|
|
|
|
|
+ if current_cluster:
|
|
|
|
|
+ clusters.append(current_cluster)
|
|
|
|
|
+
|
|
|
|
|
+ return clusters
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _merge_close_clusters(self, clusters: List[Dict],
|
|
|
|
|
+ target_count: int) -> List[Dict]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 合并相近的簇,直到数量等于目标列数
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ clusters: 聚类列表
|
|
|
|
|
+ target_count: 目标列数
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 合并后的聚类列表
|
|
|
|
|
+ """
|
|
|
|
|
+ if len(clusters) <= target_count:
|
|
|
|
|
+ return clusters
|
|
|
|
|
+
|
|
|
|
|
+ # 复制一份,避免修改原数据
|
|
|
|
|
+ working_clusters = [c.copy() for c in clusters]
|
|
|
|
|
+
|
|
|
|
|
+ while len(working_clusters) > target_count:
|
|
|
|
|
+ # 找到距离最近的两个簇
|
|
|
|
|
+ min_distance = float('inf')
|
|
|
|
|
+ merge_idx = 0
|
|
|
|
|
+
|
|
|
|
|
+ for i in range(len(working_clusters) - 1):
|
|
|
|
|
+ distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
|
|
|
|
|
+ if distance < min_distance:
|
|
|
|
|
+ min_distance = distance
|
|
|
|
|
+ merge_idx = i
|
|
|
|
|
+
|
|
|
|
|
+ # 合并
|
|
|
|
|
+ cluster1 = working_clusters[merge_idx]
|
|
|
|
|
+ cluster2 = working_clusters[merge_idx + 1]
|
|
|
|
|
+
|
|
|
|
|
+ merged_cluster = {
|
|
|
|
|
+ 'x_min': cluster1['x_min'],
|
|
|
|
|
+ 'x_max': cluster2['x_max'],
|
|
|
|
|
+ 'boxes': cluster1['boxes'] + cluster2['boxes']
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ # 替换
|
|
|
|
|
+ working_clusters[merge_idx] = merged_cluster
|
|
|
|
|
+ working_clusters.pop(merge_idx + 1)
|
|
|
|
|
+
|
|
|
|
|
+ return working_clusters
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _get_boxes_in_column(self, boxes: List[Dict],
|
|
|
|
|
+ boundaries: List[Tuple[int, int]],
|
|
|
|
|
+ col_idx: int) -> List[Dict]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 获取指定列范围内的 boxes(改进版:包含重叠)
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ boxes: 当前行的所有 boxes
|
|
|
|
|
+ boundaries: 列边界
|
|
|
|
|
+ col_idx: 列索引
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 该列的 boxes
|
|
|
|
|
+ """
|
|
|
|
|
+ if col_idx >= len(boundaries):
|
|
|
|
|
+ return []
|
|
|
|
|
+
|
|
|
|
|
+ x_start, x_end = boundaries[col_idx]
|
|
|
|
|
+
|
|
|
|
|
+ col_boxes = []
|
|
|
|
|
+ for box in boxes:
|
|
|
|
|
+ bbox = box['bbox']
|
|
|
|
|
+ box_x_start = bbox[0]
|
|
|
|
|
+ box_x_end = bbox[2]
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 改进:检查是否有重叠(不只是中心点)
|
|
|
|
|
+ overlap = not (box_x_start > x_end or box_x_end < x_start)
|
|
|
|
|
+
|
|
|
|
|
+ if overlap:
|
|
|
|
|
+ col_boxes.append(box)
|
|
|
|
|
+
|
|
|
|
|
+ return col_boxes
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
|
|
|
|
|
+ table_bbox: Optional[List[int]],
|
|
|
|
|
+ html: str) -> Tuple[List[Dict], List[int]]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 筛选表格区域内的 paddle boxes
|
|
|
|
|
+
|
|
|
|
|
+ 策略:
|
|
|
|
|
+ 1. 如果有 table_bbox,使用边界框筛选(扩展边界)
|
|
|
|
|
+ 2. 如果没有 table_bbox,通过内容匹配推断区域
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ paddle_boxes: paddle OCR 结果
|
|
|
|
|
+ table_bbox: 表格边界框 [x1, y1, x2, y2]
|
|
|
|
|
+ html: HTML 内容(用于内容验证)
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ (筛选后的 boxes, 实际表格边界框)
|
|
|
|
|
+ """
|
|
|
|
|
+ if not paddle_boxes:
|
|
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
|
|
|
|
|
+ if table_bbox and len(table_bbox) == 4:
|
|
|
|
|
+ x1, y1, x2, y2 = table_bbox
|
|
|
|
|
+
|
|
|
|
|
+ # 扩展边界(考虑边框外的文本)
|
|
|
|
|
+ margin = 20
|
|
|
|
|
+ expanded_bbox = [
|
|
|
|
|
+ max(0, x1 - margin),
|
|
|
|
|
+ max(0, y1 - margin),
|
|
|
|
|
+ x2 + margin,
|
|
|
|
|
+ y2 + margin
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ filtered = []
|
|
|
|
|
+ for box in paddle_boxes:
|
|
|
|
|
+ bbox = box['bbox']
|
|
|
|
|
+ box_center_x = (bbox[0] + bbox[2]) / 2
|
|
|
|
|
+ box_center_y = (bbox[1] + bbox[3]) / 2
|
|
|
|
|
+
|
|
|
|
|
+ # 中心点在扩展区域内
|
|
|
|
|
+ if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
|
|
|
|
|
+ expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
|
|
|
|
|
+ filtered.append(box)
|
|
|
|
|
+
|
|
|
|
|
+ if filtered:
|
|
|
|
|
+ # 计算实际边界框
|
|
|
|
|
+ actual_bbox = [
|
|
|
|
|
+ min(b['bbox'][0] for b in filtered),
|
|
|
|
|
+ min(b['bbox'][1] for b in filtered),
|
|
|
|
|
+ max(b['bbox'][2] for b in filtered),
|
|
|
|
|
+ max(b['bbox'][3] for b in filtered)
|
|
|
|
|
+ ]
|
|
|
|
|
+ return filtered, actual_bbox
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 2: 通过内容匹配推断区域
|
|
|
|
|
+ print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
|
|
|
|
|
+
|
|
|
|
|
+ # 提取 HTML 中的所有文本
|
|
|
|
|
+ from bs4 import BeautifulSoup
|
|
|
|
|
+ soup = BeautifulSoup(html, 'html.parser')
|
|
|
|
|
+ html_texts = set()
|
|
|
|
|
+ for cell in soup.find_all(['td', 'th']):
|
|
|
|
|
+ text = cell.get_text(strip=True)
|
|
|
|
|
+ if text:
|
|
|
|
|
+ html_texts.add(self.text_matcher.normalize_text(text))
|
|
|
|
|
+
|
|
|
|
|
+ if not html_texts:
|
|
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
|
|
+
|
|
|
|
|
+ # 找出与 HTML 内容匹配的 boxes
|
|
|
|
|
+ matched_boxes = []
|
|
|
|
|
+ for box in paddle_boxes:
|
|
|
|
|
+ normalized_text = self.text_matcher.normalize_text(box['text'])
|
|
|
|
|
+
|
|
|
|
|
+ # 检查是否匹配
|
|
|
|
|
+ if any(normalized_text in ht or ht in normalized_text
|
|
|
|
|
+ for ht in html_texts):
|
|
|
|
|
+ matched_boxes.append(box)
|
|
|
|
|
+
|
|
|
|
|
+ if not matched_boxes:
|
|
|
|
|
+ # 🔑 降级:如果精确匹配失败,使用模糊匹配
|
|
|
|
|
+ print(" ℹ️ 精确匹配失败,尝试模糊匹配...")
|
|
|
|
|
+
|
|
|
|
|
+ for box in paddle_boxes:
|
|
|
|
|
+ normalized_text = self.text_matcher.normalize_text(box['text'])
|
|
|
|
|
+
|
|
|
|
|
+ for ht in html_texts:
|
|
|
|
|
+ similarity = fuzz.partial_ratio(normalized_text, ht)
|
|
|
|
|
+ if similarity >= 70: # 降低阈值
|
|
|
|
|
+ matched_boxes.append(box)
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ if matched_boxes:
|
|
|
|
|
+ # 计算边界框
|
|
|
|
|
+ actual_bbox = [
|
|
|
|
|
+ min(b['bbox'][0] for b in matched_boxes),
|
|
|
|
|
+ min(b['bbox'][1] for b in matched_boxes),
|
|
|
|
|
+ max(b['bbox'][2] for b in matched_boxes),
|
|
|
|
|
+ max(b['bbox'][3] for b in matched_boxes)
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 扩展边界,包含可能遗漏的文本
|
|
|
|
|
+ margin = 30
|
|
|
|
|
+ expanded_bbox = [
|
|
|
|
|
+ max(0, actual_bbox[0] - margin),
|
|
|
|
|
+ max(0, actual_bbox[1] - margin),
|
|
|
|
|
+ actual_bbox[2] + margin,
|
|
|
|
|
+ actual_bbox[3] + margin
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ # 重新筛选(包含边界上的文本)
|
|
|
|
|
+ final_filtered = []
|
|
|
|
|
+ for box in paddle_boxes:
|
|
|
|
|
+ bbox = box['bbox']
|
|
|
|
|
+ box_center_x = (bbox[0] + bbox[2]) / 2
|
|
|
|
|
+ box_center_y = (bbox[1] + bbox[3]) / 2
|
|
|
|
|
+
|
|
|
|
|
+ if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
|
|
|
|
|
+ expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
|
|
|
|
|
+ final_filtered.append(box)
|
|
|
|
|
+
|
|
|
|
|
+ return final_filtered, actual_bbox
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 最后的降级:返回所有 boxes
|
|
|
|
|
+ print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes")
|
|
|
|
|
+ if paddle_boxes:
|
|
|
|
|
+ actual_bbox = [
|
|
|
|
|
+ min(b['bbox'][0] for b in paddle_boxes),
|
|
|
|
|
+ min(b['bbox'][1] for b in paddle_boxes),
|
|
|
|
|
+ max(b['bbox'][2] for b in paddle_boxes),
|
|
|
|
|
+ max(b['bbox'][3] for b in paddle_boxes)
|
|
|
|
|
+ ]
|
|
|
|
|
+ return paddle_boxes, actual_bbox
|
|
|
|
|
+
|
|
|
|
|
+ return [], [0, 0, 0, 0]
|
|
|
|
|
+
|
|
|
|
|
+ def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict],
|
|
|
|
|
+ y_tolerance: int = 10,
|
|
|
|
|
+ auto_correct_skew: bool = True,
|
|
|
|
|
+ inclination_threshold: float = 0.3) -> List[Dict]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 将 paddle_text_boxes 按 y 坐标分组(聚类)- 增强版本
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ paddle_boxes: Paddle OCR 文字框列表
|
|
|
|
|
+ y_tolerance: Y 坐标容忍度(像素)
|
|
|
|
|
+ auto_correct_skew: 是否自动校正倾斜
|
|
|
|
|
+
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
|
|
|
|
|
+ """
|
|
|
|
|
+ if not paddle_boxes:
|
|
|
|
|
+ return []
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 步骤 1: 检测并校正倾斜(使用 BBoxExtractor)
|
|
|
|
|
+ if auto_correct_skew:
|
|
|
|
|
+ rotation_angle = BBoxExtractor.calculate_skew_angle(paddle_boxes)
|
|
|
|
|
+
|
|
|
|
|
+ if abs(rotation_angle) > inclination_threshold:
|
|
|
|
|
+ max_x = max(box['bbox'][2] for box in paddle_boxes)
|
|
|
|
|
+ max_y = max(box['bbox'][3] for box in paddle_boxes)
|
|
|
|
|
+ image_size = (max_x, max_y)
|
|
|
|
|
+
|
|
|
|
|
+ print(f" 🔧 校正倾斜角度: {rotation_angle:.2f}°")
|
|
|
|
|
+ paddle_boxes = BBoxExtractor.correct_boxes_skew(
|
|
|
|
|
+ paddle_boxes, -rotation_angle, image_size
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 步骤 2: 按校正后的 y 坐标分组
|
|
|
|
|
+ boxes_with_y = []
|
|
|
|
|
+ for box in paddle_boxes:
|
|
|
|
|
+ bbox = box['bbox']
|
|
|
|
|
+ y_center = (bbox[1] + bbox[3]) / 2
|
|
|
|
|
+ boxes_with_y.append({
|
|
|
|
|
+ 'y_center': y_center,
|
|
|
|
|
+ 'box': box
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ # 按 y 坐标排序
|
|
|
|
|
+ boxes_with_y.sort(key=lambda x: x['y_center'])
|
|
|
|
|
+
|
|
|
|
|
+ groups = []
|
|
|
|
|
+ current_group = None
|
|
|
|
|
+
|
|
|
|
|
+ for item in boxes_with_y:
|
|
|
|
|
+ if current_group is None:
|
|
|
|
|
+ # 开始新组
|
|
|
|
|
+ current_group = {
|
|
|
|
|
+ 'y_center': item['y_center'],
|
|
|
|
|
+ 'boxes': [item['box']]
|
|
|
|
|
+ }
|
|
|
|
|
+ else:
|
|
|
|
|
+ if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
|
|
|
|
|
+ current_group['boxes'].append(item['box'])
|
|
|
|
|
+ # 更新组的中心
|
|
|
|
|
+ current_group['y_center'] = sum(
|
|
|
|
|
+ (b['bbox'][1] + b['bbox'][3]) / 2 for b in current_group['boxes']
|
|
|
|
|
+ ) / len(current_group['boxes'])
|
|
|
|
|
+ else:
|
|
|
|
|
+ groups.append(current_group)
|
|
|
|
|
+ current_group = {
|
|
|
|
|
+ 'y_center': item['y_center'],
|
|
|
|
|
+ 'boxes': [item['box']]
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if current_group:
|
|
|
|
|
+ groups.append(current_group)
|
|
|
|
|
+
|
|
|
|
|
+ print(f" ✓ 分组完成: {len(groups)} 行")
|
|
|
|
|
+
|
|
|
|
|
+ return groups
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ def _match_html_rows_to_paddle_groups(self, html_rows: List,
|
|
|
|
|
+ grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 智能匹配 HTML 行与 paddle 分组(增强版 DP:支持跳过 HTML 行,防止链条断裂)
|
|
|
|
|
+ """
|
|
|
|
|
+ if not html_rows or not grouped_boxes:
|
|
|
|
|
+ return {}
|
|
|
|
|
+
|
|
|
|
|
+ mapping = {}
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 1: 数量相等,简单 1:1 映射
|
|
|
|
|
+ if len(html_rows) == len(grouped_boxes):
|
|
|
|
|
+ for i in range(len(html_rows)):
|
|
|
|
|
+ mapping[i] = [i]
|
|
|
|
|
+ return mapping
|
|
|
|
|
+
|
|
|
|
|
+ # --- 准备数据 ---
|
|
|
|
|
+ # 提取 HTML 文本
|
|
|
|
|
+ html_row_texts = []
|
|
|
|
|
+ for row in html_rows:
|
|
|
|
|
+ cells = row.find_all(['td', 'th'])
|
|
|
|
|
+ texts = [self.text_matcher.normalize_text(c.get_text(strip=True)) for c in cells]
|
|
|
|
|
+ html_row_texts.append("".join(texts))
|
|
|
|
|
+
|
|
|
|
|
+ # 预计算所有组的文本
|
|
|
|
|
+ group_texts = []
|
|
|
|
|
+ for group in grouped_boxes:
|
|
|
|
|
+ boxes = group['boxes']
|
|
|
|
|
+ texts = [self.text_matcher.normalize_text(b['text']) for b in boxes]
|
|
|
|
|
+ group_texts.append("".join(texts))
|
|
|
|
|
+
|
|
|
|
|
+ n_html = len(html_row_texts)
|
|
|
|
|
+ n_paddle = len(grouped_boxes)
|
|
|
|
|
+
|
|
|
|
|
+ # ⚡️ 优化 3: 预计算合并文本
|
|
|
|
|
+ MAX_MERGE = 4
|
|
|
|
|
+ merged_cache = {}
|
|
|
|
|
+ for j in range(n_paddle):
|
|
|
|
|
+ current_t = ""
|
|
|
|
|
+ for k in range(MAX_MERGE):
|
|
|
|
|
+ if j + k < n_paddle:
|
|
|
|
|
+ current_t += group_texts[j + k]
|
|
|
|
|
+ merged_cache[(j, k + 1)] = current_t
|
|
|
|
|
+ else:
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ # --- 动态规划 (DP) ---
|
|
|
|
|
+ # dp[i][j] 表示:HTML 前 i 行 (0..i) 匹配到了 Paddle 的前 j 组 (0..j) 的最大得分
|
|
|
|
|
+ # 初始化为负无穷
|
|
|
|
|
+ dp = np.full((n_html, n_paddle), -np.inf)
|
|
|
|
|
+ # 记录路径:path[i][j] = (prev_j, start_j)
|
|
|
|
|
+ # prev_j: 上一行结束的 paddle index
|
|
|
|
|
+ # start_j: 当前行开始的 paddle index (因为一行可能对应多个组)
|
|
|
|
|
+ path = {}
|
|
|
|
|
+
|
|
|
|
|
+ # 参数配置
|
|
|
|
|
+ SEARCH_WINDOW = 15 # 向前搜索窗口
|
|
|
|
|
+ SKIP_PADDLE_PENALTY = 0.1 # 跳过 Paddle 组的惩罚
|
|
|
|
|
+ SKIP_HTML_PENALTY = 0.3 # 关键:跳过 HTML 行的惩罚
|
|
|
|
|
+ # --- 1. 初始化第一行 ---
|
|
|
|
|
+ # 选项 A: 匹配 Paddle 组
|
|
|
|
|
+ for end_j in range(min(n_paddle, SEARCH_WINDOW + MAX_MERGE)):
|
|
|
|
|
+ for count in range(1, MAX_MERGE + 1):
|
|
|
|
|
+ start_j = end_j - count + 1
|
|
|
|
|
+ if start_j < 0: continue
|
|
|
|
|
+
|
|
|
|
|
+ current_text = merged_cache.get((start_j, count), "")
|
|
|
|
|
+ similarity = self._calculate_similarity(html_row_texts[0], current_text)
|
|
|
|
|
+
|
|
|
|
|
+ penalty = start_j * SKIP_PADDLE_PENALTY
|
|
|
|
|
+ score = similarity - penalty
|
|
|
|
|
+
|
|
|
|
|
+ # 只有得分尚可才作为有效状态
|
|
|
|
|
+ if score > 0.1:
|
|
|
|
|
+ if score > dp[0][end_j]:
|
|
|
|
|
+ dp[0][end_j] = score
|
|
|
|
|
+ path[(0, end_j)] = (-1, start_j)
|
|
|
|
|
+
|
|
|
|
|
+ # 选项 B: 第一行就跳过 (虽然少见,但为了完整性)
|
|
|
|
|
+ # 如果第一行跳过,相当于没有消耗任何 paddle 组,状态难以用 dp[0][j] 表达
|
|
|
|
|
+ # 这里简化处理,假设第一行必须匹配点什么,或者由后续行修正
|
|
|
|
|
+
|
|
|
|
|
+ # --- 2. 状态转移 ---
|
|
|
|
|
+ for i in range(1, n_html):
|
|
|
|
|
+ html_text = html_row_texts[i]
|
|
|
|
|
+
|
|
|
|
|
+ # 获取上一行所有有效位置
|
|
|
|
|
+ valid_prev_indices = [j for j in range(n_paddle) if dp[i-1][j] > -np.inf]
|
|
|
|
|
+
|
|
|
|
|
+ # 剪枝
|
|
|
|
|
+ if len(valid_prev_indices) > 30:
|
|
|
|
|
+ valid_prev_indices.sort(key=lambda j: dp[i-1][j], reverse=True)
|
|
|
|
|
+ valid_prev_indices = valid_prev_indices[:30]
|
|
|
|
|
+
|
|
|
|
|
+ # 🛡️ 关键修复:允许跳过当前 HTML 行 (继承上一行的状态)
|
|
|
|
|
+ # 如果跳过当前行,Paddle 指针 j 不变
|
|
|
|
|
+ for prev_j in valid_prev_indices:
|
|
|
|
|
+ score_skip = dp[i-1][prev_j] - SKIP_HTML_PENALTY
|
|
|
|
|
+ if score_skip > dp[i][prev_j]:
|
|
|
|
|
+ dp[i][prev_j] = score_skip
|
|
|
|
|
+ # 记录路径:start_j = prev_j + 1 表示没有消耗新组 (空范围)
|
|
|
|
|
+ path[(i, prev_j)] = (prev_j, prev_j + 1)
|
|
|
|
|
+
|
|
|
|
|
+ # 如果是空行,直接跳过计算,仅保留继承的状态
|
|
|
|
|
+ if not html_text:
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # 正常匹配逻辑
|
|
|
|
|
+ for prev_j in valid_prev_indices:
|
|
|
|
|
+ prev_score = dp[i-1][prev_j]
|
|
|
|
|
+
|
|
|
|
|
+ max_gap = min(SEARCH_WINDOW, n_paddle - prev_j - 1)
|
|
|
|
|
+
|
|
|
|
|
+ for gap in range(max_gap):
|
|
|
|
|
+ start_j = prev_j + 1 + gap
|
|
|
|
|
+
|
|
|
|
|
+ for count in range(1, MAX_MERGE + 1):
|
|
|
|
|
+ end_j = start_j + count - 1
|
|
|
|
|
+ if end_j >= n_paddle: break
|
|
|
|
|
+
|
|
|
|
|
+ current_text = merged_cache.get((start_j, count), "")
|
|
|
|
|
+
|
|
|
|
|
+ # 长度预筛选
|
|
|
|
|
+ h_len = len(html_text)
|
|
|
|
|
+ p_len = len(current_text)
|
|
|
|
|
+ if h_len > 10 and p_len < h_len * 0.2:
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ similarity = self._calculate_similarity(html_text, current_text)
|
|
|
|
|
+
|
|
|
|
|
+ # 计算惩罚
|
|
|
|
|
+ # 1. 跳过惩罚 (gap)
|
|
|
|
|
+ # 2. 长度惩罚 (防止过度合并)
|
|
|
|
|
+ len_penalty = 0.0
|
|
|
|
|
+ if h_len > 0:
|
|
|
|
|
+ ratio = p_len / h_len
|
|
|
|
|
+ if ratio > 2.0: len_penalty = (ratio - 2.0) * 0.2
|
|
|
|
|
+
|
|
|
|
|
+ current_score = similarity - (gap * SKIP_PADDLE_PENALTY) - len_penalty
|
|
|
|
|
+
|
|
|
|
|
+ # 只有正收益才转移
|
|
|
|
|
+ if current_score > 0.1:
|
|
|
|
|
+ total_score = prev_score + current_score
|
|
|
|
|
+
|
|
|
|
|
+ if total_score > dp[i][end_j]:
|
|
|
|
|
+ dp[i][end_j] = total_score
|
|
|
|
|
+ path[(i, end_j)] = (prev_j, start_j)
|
|
|
|
|
+
|
|
|
|
|
+ # --- 3. 回溯找最优路径 ---
|
|
|
|
|
+ # 找到最后一行得分最高的结束位置
|
|
|
|
|
+ best_end_j = -1
|
|
|
|
|
+ max_score = -np.inf
|
|
|
|
|
+
|
|
|
|
|
+ # 优先找最后一行,如果最后一行没匹配上,往前找
|
|
|
|
|
+ found_end = False
|
|
|
|
|
+ for i in range(n_html - 1, -1, -1):
|
|
|
|
|
+ for j in range(n_paddle):
|
|
|
|
|
+ if dp[i][j] > max_score:
|
|
|
|
|
+ max_score = dp[i][j]
|
|
|
|
|
+ best_end_j = j
|
|
|
|
|
+ best_last_row = i
|
|
|
|
|
+ if max_score > -np.inf:
|
|
|
|
|
+ found_end = True
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ mapping = {}
|
|
|
|
|
+ used_groups = set()
|
|
|
|
|
+
|
|
|
|
|
+ if found_end:
|
|
|
|
|
+ curr_i = best_last_row
|
|
|
|
|
+ curr_j = best_end_j
|
|
|
|
|
+
|
|
|
|
|
+ while curr_i >= 0:
|
|
|
|
|
+ if (curr_i, curr_j) in path:
|
|
|
|
|
+ prev_j, start_j = path[(curr_i, curr_j)]
|
|
|
|
|
+
|
|
|
|
|
+ # 如果 start_j <= curr_j,说明消耗了 Paddle 组
|
|
|
|
|
+ # 如果 start_j > curr_j,说明是跳过 HTML 行 (空范围)
|
|
|
|
|
+ if start_j <= curr_j:
|
|
|
|
|
+ indices = list(range(start_j, curr_j + 1))
|
|
|
|
|
+ mapping[curr_i] = indices
|
|
|
|
|
+ used_groups.update(indices)
|
|
|
|
|
+ else:
|
|
|
|
|
+ mapping[curr_i] = []
|
|
|
|
|
+
|
|
|
|
|
+ curr_j = prev_j
|
|
|
|
|
+ curr_i -= 1
|
|
|
|
|
+ else:
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ # 填补未匹配的行
|
|
|
|
|
+ for i in range(n_html):
|
|
|
|
|
+ if i not in mapping:
|
|
|
|
|
+ mapping[i] = []
|
|
|
|
|
+
|
|
|
|
|
+ # --- 4. 后处理:未匹配组的归属 (Orphans) ---
|
|
|
|
|
+ unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
|
|
|
|
|
+
|
|
|
|
|
+ if unused_groups:
|
|
|
|
|
+ print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
|
|
|
|
|
+ for unused_idx in unused_groups:
|
|
|
|
|
+ unused_group = grouped_boxes[unused_idx]
|
|
|
|
|
+ unused_y_min = min(b['bbox'][1] for b in unused_group['boxes'])
|
|
|
|
|
+ unused_y_max = max(b['bbox'][3] for b in unused_group['boxes'])
|
|
|
|
|
+
|
|
|
|
|
+ above_idx = None
|
|
|
|
|
+ below_idx = None
|
|
|
|
|
+ above_distance = float('inf')
|
|
|
|
|
+ below_distance = float('inf')
|
|
|
|
|
+
|
|
|
|
|
+ for i in range(unused_idx - 1, -1, -1):
|
|
|
|
|
+ if i in used_groups:
|
|
|
|
|
+ above_idx = i
|
|
|
|
|
+ above_group = grouped_boxes[i]
|
|
|
|
|
+ max_y_box = max(above_group['boxes'], key=lambda b: b['bbox'][3])
|
|
|
|
|
+ above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2
|
|
|
|
|
+ above_distance = abs(unused_y_min - above_y_center)
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ for i in range(unused_idx + 1, len(grouped_boxes)):
|
|
|
|
|
+ if i in used_groups:
|
|
|
|
|
+ below_idx = i
|
|
|
|
|
+ below_group = grouped_boxes[i]
|
|
|
|
|
+ min_y_box = min(below_group['boxes'], key=lambda b: b['bbox'][1])
|
|
|
|
|
+ below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2
|
|
|
|
|
+ below_distance = abs(below_y_center - unused_y_max)
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ closest_used_idx = None
|
|
|
|
|
+ merge_direction = ""
|
|
|
|
|
+
|
|
|
|
|
+ if above_idx is not None and below_idx is not None:
|
|
|
|
|
+ if above_distance < below_distance:
|
|
|
|
|
+ closest_used_idx = above_idx
|
|
|
|
|
+ merge_direction = "上方"
|
|
|
|
|
+ else:
|
|
|
|
|
+ closest_used_idx = below_idx
|
|
|
|
|
+ merge_direction = "下方"
|
|
|
|
|
+ elif above_idx is not None:
|
|
|
|
|
+ closest_used_idx = above_idx
|
|
|
|
|
+ merge_direction = "上方"
|
|
|
|
|
+ elif below_idx is not None:
|
|
|
|
|
+ closest_used_idx = below_idx
|
|
|
|
|
+ merge_direction = "下方"
|
|
|
|
|
+
|
|
|
|
|
+ if closest_used_idx is not None:
|
|
|
|
|
+ target_html_row = None
|
|
|
|
|
+ for html_row_idx, group_indices in mapping.items():
|
|
|
|
|
+ if closest_used_idx in group_indices:
|
|
|
|
|
+ target_html_row = html_row_idx
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ if target_html_row is not None:
|
|
|
|
|
+ if unused_idx not in mapping[target_html_row]:
|
|
|
|
|
+ mapping[target_html_row].append(unused_idx)
|
|
|
|
|
+ mapping[target_html_row].sort()
|
|
|
|
|
+ print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}({merge_direction}行)")
|
|
|
|
|
+ used_groups.add(unused_idx)
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
|
|
|
|
|
+ for row_idx in mapping:
|
|
|
|
|
+ if mapping[row_idx]:
|
|
|
|
|
+ mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
|
|
|
|
|
+
|
|
|
|
|
+ return mapping
|
|
|
|
|
+
|
|
|
|
|
+ def _calculate_similarity(self, text1: str, text2: str) -> float:
|
|
|
|
|
+ """
|
|
|
|
|
+ 计算两个文本的相似度,结合字符覆盖率和序列相似度 (性能优化版)
|
|
|
|
|
+ """
|
|
|
|
|
+ if not text1 or not text2:
|
|
|
|
|
+ return 0.0
|
|
|
|
|
+
|
|
|
|
|
+ len1, len2 = len(text1), len(text2)
|
|
|
|
|
+
|
|
|
|
|
+ # ⚡️ 优化 1: 长度快速检查
|
|
|
|
|
+ # 如果长度差异过大(例如一个 50 字符,一个 2 字符),直接认为不匹配
|
|
|
|
|
+ if len1 > 0 and len2 > 0:
|
|
|
|
|
+ min_l, max_l = min(len1, len2), max(len1, len2)
|
|
|
|
|
+ if max_l > 10 and min_l / max_l < 0.2:
|
|
|
|
|
+ return 0.0
|
|
|
|
|
+
|
|
|
|
|
+ # 1. 字符覆盖率 (Character Overlap)
|
|
|
|
|
+ from collections import Counter
|
|
|
|
|
+ c1 = Counter(text1)
|
|
|
|
|
+ c2 = Counter(text2)
|
|
|
|
|
+
|
|
|
|
|
+ intersection = c1 & c2
|
|
|
|
|
+ overlap_count = sum(intersection.values())
|
|
|
|
|
+
|
|
|
|
|
+ coverage = overlap_count / len1 if len1 > 0 else 0
|
|
|
|
|
+
|
|
|
|
|
+ # ⚡️ 优化 2: 覆盖率低时跳过昂贵的 fuzz 计算
|
|
|
|
|
+ # 如果字符重叠率低于 30%,说明内容基本不相关,没必要算序列相似度
|
|
|
|
|
+ if coverage < 0.3:
|
|
|
|
|
+ return coverage * 0.7
|
|
|
|
|
+
|
|
|
|
|
+ # 2. 序列相似度 (Sequence Similarity)
|
|
|
|
|
+ # 使用 token_sort_ratio 来容忍一定的乱序
|
|
|
|
|
+ seq_score = fuzz.token_sort_ratio(text1, text2) / 100.0
|
|
|
|
|
+
|
|
|
|
|
+ return (coverage * 0.7) + (seq_score * 0.3)
|
|
|
|
|
+
|
|
|
|
|
+ def _preprocess_text_for_matching(self, text: str) -> str:
|
|
|
|
|
+ """
|
|
|
|
|
+ 预处理文本:在不同类型的字符(如中文和数字/英文)之间插入空格,
|
|
|
|
|
+ 以便于 token_sort_ratio 更准确地进行分词和匹配。
|
|
|
|
|
+ """
|
|
|
|
|
+ if not text:
|
|
|
|
|
+ return ""
|
|
|
|
|
+ import re
|
|
|
|
|
+ # 1. 在中文和非中文(数字/字母)之间插入空格
|
|
|
|
|
+ # 例如: "2024年" -> "2024 年", "ID号码123" -> "ID号码 123"
|
|
|
|
|
+ text = re.sub(r'([\u4e00-\u9fa5])([a-zA-Z0-9])', r'\1 \2', text)
|
|
|
|
|
+ text = re.sub(r'([a-zA-Z0-9])([\u4e00-\u9fa5])', r'\1 \2', text)
|
|
|
|
|
+ return text
|
|
|
|
|
+
|
|
|
|
|
+ def _calculate_subsequence_score(self, target: str, source: str) -> float:
|
|
|
|
|
+ """
|
|
|
|
|
+ 计算子序列匹配得分 (解决 OCR 噪音插入问题)
|
|
|
|
|
+ 例如: Target="12345", Source="12(date)34(time)5" -> Score close to 100
|
|
|
|
|
+ """
|
|
|
|
|
+ # 1. 仅保留字母和数字,忽略符号干扰
|
|
|
|
|
+ t_clean = "".join(c for c in target if c.isalnum())
|
|
|
|
|
+ s_clean = "".join(c for c in source if c.isalnum())
|
|
|
|
|
+
|
|
|
|
|
+ if not t_clean or not s_clean:
|
|
|
|
|
+ return 0.0
|
|
|
|
|
+
|
|
|
|
|
+ # 2. 贪婪匹配子序列
|
|
|
|
|
+ t_idx, s_idx = 0, 0
|
|
|
|
|
+ matches = 0
|
|
|
|
|
+
|
|
|
|
|
+ while t_idx < len(t_clean) and s_idx < len(s_clean):
|
|
|
|
|
+ if t_clean[t_idx] == s_clean[s_idx]:
|
|
|
|
|
+ matches += 1
|
|
|
|
|
+ t_idx += 1
|
|
|
|
|
+ s_idx += 1
|
|
|
|
|
+ else:
|
|
|
|
|
+ # 跳过 source 中的噪音字符
|
|
|
|
|
+ s_idx += 1
|
|
|
|
|
+
|
|
|
|
|
+ # 3. 计算得分
|
|
|
|
|
+ match_rate = matches / len(t_clean)
|
|
|
|
|
+
|
|
|
|
|
+ # 如果匹配率太低,直接返回
|
|
|
|
|
+ if match_rate < 0.8:
|
|
|
|
|
+ return match_rate * 100
|
|
|
|
|
+
|
|
|
|
|
+ # 4. 噪音惩罚 (防止 Target="1", Source="123456789" 这种误判)
|
|
|
|
|
+ # 计算噪音长度
|
|
|
|
|
+ noise_len = len(s_clean) - matches
|
|
|
|
|
+
|
|
|
|
|
+ # 允许一定比例的噪音 (例如日期时间插入,通常占总长度的 30%-50%)
|
|
|
|
|
+ # 如果噪音长度超过目标长度的 60%,开始扣分
|
|
|
|
|
+ penalty = 0
|
|
|
|
|
+ if noise_len > len(t_clean) * 0.6:
|
|
|
|
|
+ excess_noise = noise_len - (len(t_clean) * 0.6)
|
|
|
|
|
+ penalty = excess_noise * 0.5 # 每多一个噪音字符扣 0.5 分
|
|
|
|
|
+ penalty = min(penalty, 20) # 最多扣 20 分
|
|
|
|
|
+
|
|
|
|
|
+ final_score = (match_rate * 100) - penalty
|
|
|
|
|
+ return max(0, final_score)
|
|
|
|
|
+
|
|
|
|
|
+ def _match_cell_sequential(self, cell_text: str,
|
|
|
|
|
+ boxes: List[Dict],
|
|
|
|
|
+ col_boundaries: List[Tuple[int, int]],
|
|
|
|
|
+ start_idx: int) -> Optional[Dict]:
|
|
|
|
|
+ """
|
|
|
|
|
+ 🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配
|
|
|
|
|
+ """
|
|
|
|
|
+ cell_text_normalized = self.text_matcher.normalize_text(cell_text)
|
|
|
|
|
+ cell_text_processed = self._preprocess_text_for_matching(cell_text)
|
|
|
|
|
+
|
|
|
|
|
+ if len(cell_text_normalized) < 1:
|
|
|
|
|
+ return None
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 找到第一个未使用的 box
|
|
|
|
|
+ first_unused_idx = start_idx
|
|
|
|
|
+ while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'):
|
|
|
|
|
+ first_unused_idx += 1
|
|
|
|
|
+
|
|
|
|
|
+ if first_unused_idx >= len(boxes):
|
|
|
|
|
+ return None
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 策略 1: 单个 box 精确匹配
|
|
|
|
|
+ for box in boxes[first_unused_idx:]:
|
|
|
|
|
+ box_text = self.text_matcher.normalize_text(box['text'])
|
|
|
|
|
+
|
|
|
|
|
+ if cell_text_normalized == box_text:
|
|
|
|
|
+ return self._build_match_result([box], box['text'], 100.0, boxes.index(box))
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 策略 2: 多个 boxes 合并匹配
|
|
|
|
|
+ unused_boxes = [b for b in boxes[first_unused_idx:] if not b.get('used')]
|
|
|
|
|
+ # 合并同列的 boxes 合并
|
|
|
|
|
+ merged_bboxes = []
|
|
|
|
|
+ for col_idx in range(len(col_boundaries)):
|
|
|
|
|
+ combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx)
|
|
|
|
|
+ if len(combo_boxes) > 0:
|
|
|
|
|
+ sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0]))
|
|
|
|
|
+ # 🎯 改进:使用空格连接,以便于 token_sort_ratio 进行乱序匹配
|
|
|
|
|
+ merged_text = ' '.join([b['text'] for b in sorted_combo])
|
|
|
|
|
+ merged_bboxes.append({
|
|
|
|
|
+ 'text': merged_text,
|
|
|
|
|
+ 'sorted_combo': sorted_combo
|
|
|
|
|
+ })
|
|
|
|
|
+
|
|
|
|
|
+ for box in merged_bboxes:
|
|
|
|
|
+ # 1. 精确匹配
|
|
|
|
|
+ merged_text_normalized = self.text_matcher.normalize_text(box['text'])
|
|
|
|
|
+ if cell_text_normalized == merged_text_normalized:
|
|
|
|
|
+ last_sort_idx = boxes.index(box['sorted_combo'][-1])
|
|
|
|
|
+ return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx)
|
|
|
|
|
+
|
|
|
|
|
+ # 2. 子串匹配
|
|
|
|
|
+ is_substring = (cell_text_normalized in merged_text_normalized or
|
|
|
|
|
+ merged_text_normalized in cell_text_normalized)
|
|
|
|
|
+
|
|
|
|
|
+ # 3. 模糊匹配
|
|
|
|
|
+ # 🎯 改进:使用预处理后的文本进行 token_sort_ratio 计算
|
|
|
|
|
+ box_text_processed = self._preprocess_text_for_matching(box['text'])
|
|
|
|
|
+
|
|
|
|
|
+ # token_sort_ratio: 自动分词并排序比较,解决 OCR 结果顺序与 HTML 不一致的问题
|
|
|
|
|
+ token_sort_sim = fuzz.token_sort_ratio(cell_text_processed, box_text_processed)
|
|
|
|
|
+
|
|
|
|
|
+ # partial_ratio: 子串模糊匹配,解决 OCR 识别错误
|
|
|
|
|
+ partial_sim = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
|
|
|
|
|
+
|
|
|
|
|
+ # 🛡️ 增强版防御:防止“短文本”误匹配“长文本”
|
|
|
|
|
+ if partial_sim > 80:
|
|
|
|
|
+ len_cell = len(cell_text_normalized)
|
|
|
|
|
+ len_box = len(merged_text_normalized)
|
|
|
|
|
+
|
|
|
|
|
+ # 确定短方和长方
|
|
|
|
|
+ if len_cell < len_box:
|
|
|
|
|
+ len_short, len_long = len_cell, len_box
|
|
|
|
|
+ text_short = cell_text_normalized
|
|
|
|
|
+ text_long = merged_text_normalized
|
|
|
|
|
+ else:
|
|
|
|
|
+ len_short, len_long = len_box, len_cell
|
|
|
|
|
+ text_short = merged_text_normalized
|
|
|
|
|
+ text_long = cell_text_normalized
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 修正:检测有效内容 (字母、数字、汉字)
|
|
|
|
|
+ # 使用 Unicode 范围匹配汉字: \u4e00-\u9fa5
|
|
|
|
|
+ import re
|
|
|
|
|
+ def has_valid_content(text):
|
|
|
|
|
+ return bool(re.search(r'[a-zA-Z0-9\u4e00-\u9fa5]', text))
|
|
|
|
|
+
|
|
|
|
|
+ short_has_content = has_valid_content(text_short)
|
|
|
|
|
+ long_has_content = has_valid_content(text_long)
|
|
|
|
|
+
|
|
|
|
|
+ # 🛑 拒绝条件 1: 短方是纯符号 (无有效内容),且长方有内容
|
|
|
|
|
+ # 例如: Cell="-" vs Box="-200" (拦截)
|
|
|
|
|
+ # 例如: Cell="中国银行" vs Box="中国银行储蓄卡" (不拦截,因为都有汉字)
|
|
|
|
|
+ if not short_has_content and long_has_content:
|
|
|
|
|
+ # 允许例外:如果长方也很短 (比如 Cell="-" Box="- "),可能只是多了个空格,不拦截
|
|
|
|
|
+ if len_long > len_short + 2:
|
|
|
|
|
+ print(f" ⚠️ 拒绝纯符号部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
|
|
|
|
|
+ partial_sim = 0.0
|
|
|
|
|
+
|
|
|
|
|
+ # 🛑 拒绝条件 2: 短方虽然有内容,但太短了 (信息量不足)
|
|
|
|
|
+ elif short_has_content:
|
|
|
|
|
+ # 如果短方只有 1 个字符,且长方超过 3 个字符 -> 拒绝
|
|
|
|
|
+ if len_short == 1 and len_long > 3:
|
|
|
|
|
+ print(f" ⚠️ 拒绝单字符部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
|
|
|
|
|
+ partial_sim = 0.0
|
|
|
|
|
+ # 如果短方只有 2 个字符,且长方超过 8 个字符 -> 拒绝
|
|
|
|
|
+ elif len_short == 2 and len_long > 8:
|
|
|
|
|
+ print(f" ⚠️ 拒绝微小碎片部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
|
|
|
|
|
+ partial_sim = 0.0
|
|
|
|
|
+
|
|
|
|
|
+ # 🆕 新增条件 3: 覆盖率过低 (防止 "2024" 匹配 "ID2024...")
|
|
|
|
|
+ # 场景: Cell 是长文本, Box 是短文本, 恰好包含在 Cell 中
|
|
|
|
|
+ # 逻辑: 如果覆盖率 < 30% 且 整体相似度(token_sort) < 45,说明 Box 缺失了 Cell 的绝大部分内容
|
|
|
|
|
+ else:
|
|
|
|
|
+ coverage = len_short / len_long if len_long > 0 else 0
|
|
|
|
|
+ if coverage < 0.3 and token_sort_sim < 45:
|
|
|
|
|
+ print(f" ⚠️ 拒绝低覆盖率部分匹配: '{text_short}' in '{text_long}' (cov={coverage:.2f})")
|
|
|
|
|
+ partial_sim = 0.0
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 新增:token_set_ratio (集合匹配)
|
|
|
|
|
+ # 专门解决:目标文本被 OCR 文本中的噪音隔开的情况
|
|
|
|
|
+ # 例如 Target="A B", OCR="A noise B" -> token_set_ratio 会很高
|
|
|
|
|
+ token_set_sim = fuzz.token_set_ratio(cell_text_processed, box_text_processed)
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 4: 重构匹配 (Reconstruction Match) - 解决 ID 被噪音打断的问题
|
|
|
|
|
+ # 逻辑:提取 OCR 中所有属于 Target 子串的 token,拼起来再比
|
|
|
|
|
+ reconstruct_sim = 0.0
|
|
|
|
|
+ if len(cell_text_normalized) > 10: # 仅对长文本启用,防止短文本误判
|
|
|
|
|
+ # 使用预处理后的文本分词 (已处理中文/数字间隔)
|
|
|
|
|
+ box_tokens = box_text_processed.split()
|
|
|
|
|
+ # 筛选出所有是目标文本子串的 token
|
|
|
|
|
+ valid_tokens = []
|
|
|
|
|
+ for token in box_tokens:
|
|
|
|
|
+ # 忽略太短的 token (除非目标也很短),防止 "1" 这种误匹配
|
|
|
|
|
+ if len(token) < 2 and len(cell_text_normalized) > 5:
|
|
|
|
|
+ continue
|
|
|
|
|
+ if token in cell_text_normalized:
|
|
|
|
|
+ valid_tokens.append(token)
|
|
|
|
|
+
|
|
|
|
|
+ if valid_tokens:
|
|
|
|
|
+ # 拼接回原始形态
|
|
|
|
|
+ reconstructed_text = "".join(valid_tokens)
|
|
|
|
|
+ reconstruct_sim = fuzz.ratio(cell_text_normalized, reconstructed_text)
|
|
|
|
|
+ if reconstruct_sim > 90:
|
|
|
|
|
+ print(f" 🧩 重构匹配生效: '{reconstructed_text}' (sim={reconstruct_sim})")
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 策略 5: 子序列匹配 (Subsequence Match) - 解决粘连噪音问题
|
|
|
|
|
+ # 专门针对: '1544...1050' + '2024-08-10' + '0433...' 这种场景
|
|
|
|
|
+ subseq_sim = 0.0
|
|
|
|
|
+ if len(cell_text_normalized) > 8: # 仅对较长文本启用
|
|
|
|
|
+ subseq_sim = self._calculate_subsequence_score(cell_text_normalized, merged_text_normalized)
|
|
|
|
|
+ # 🛡️ 关键修复:长度和类型防御
|
|
|
|
|
+ if subseq_sim > 80:
|
|
|
|
|
+ len_cell = len(cell_text_normalized)
|
|
|
|
|
+ len_box = len(merged_text_normalized)
|
|
|
|
|
+
|
|
|
|
|
+ # 1. 长度差异过大 (Box 比 Cell 长很多)
|
|
|
|
|
+ if len_box > len_cell * 1.5:
|
|
|
|
|
+ # 2. 且 Cell 是数字/日期/时间类型
|
|
|
|
|
+ import re
|
|
|
|
|
+ if re.match(r'^[\d\-\:\.\s]+$', cell_text_normalized):
|
|
|
|
|
+ # 🧠 智能豁免:如果 Cell 本身很长 (例如 > 12字符),说明是长ID
|
|
|
|
|
+ # 长ID即使夹杂了噪音 (如 "ID...日期...文字"),只要子序列匹配高,通常也是对的
|
|
|
|
|
+ # 只有短文本 (如 "2024") 才需要严格防御
|
|
|
|
|
+ if len_cell < 12:
|
|
|
|
|
+ print(f" ⚠️ 拒绝子序列匹配: 长度差异大且为短数字类型 (sim={subseq_sim})")
|
|
|
|
|
+ subseq_sim = 0.0
|
|
|
|
|
+ else:
|
|
|
|
|
+ print(f" ✅ 接受长ID子序列匹配: 尽管长度差异大,但特征显著 (len={len_cell})")
|
|
|
|
|
+
|
|
|
|
|
+ if subseq_sim > 90:
|
|
|
|
|
+ print(f" 🔗 子序列匹配生效: '{cell_text[:10]}...' (sim={subseq_sim:.1f})")
|
|
|
|
|
+
|
|
|
|
|
+ # 综合得分:取五者最大值
|
|
|
|
|
+ similarity = max(token_sort_sim, partial_sim, token_set_sim, reconstruct_sim, subseq_sim)
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 子串匹配加分
|
|
|
|
|
+ if is_substring:
|
|
|
|
|
+ similarity = min(100, similarity + 10)
|
|
|
|
|
+
|
|
|
|
|
+ # 🎯 长度惩罚:如果 box 内容比 cell 多太多(例如吞了下一个单元格),扣分
|
|
|
|
|
+ # 注意:token_set_ratio 对长度不敏感,所以这里必须严格检查长度,防止误判
|
|
|
|
|
+ # 只有当 similarity 很高时才检查,防止误杀
|
|
|
|
|
+ if similarity > 80:
|
|
|
|
|
+ len_cell = len(cell_text_normalized)
|
|
|
|
|
+ len_box = len(merged_text_normalized)
|
|
|
|
|
+
|
|
|
|
|
+ # 如果是 token_set_sim 贡献的高分,说明 OCR 里包含了很多噪音
|
|
|
|
|
+ # 我们需要确保这些噪音不是“下一个单元格的内容”
|
|
|
|
|
+ # 这里可以加一个更严格的长度检查,或者检查是否包含换行符等
|
|
|
|
|
+ if len_box > len_cell * 2.0 + 10: # 放宽一点,因为 token_set 本来就是处理噪音的
|
|
|
|
|
+ similarity -= 10 # 稍微扣一点分,表示虽然全找到了,但噪音太多不太完美
|
|
|
|
|
+
|
|
|
|
|
+ if similarity >= self.text_matcher.similarity_threshold:
|
|
|
|
|
+ print(f" ✓ 匹配成功: '{cell_text[:15]}' vs '{box['text'][:15]}' (相似度: {similarity})")
|
|
|
|
|
+ # 由于是模糊匹配,返回第一个未使用的 box 作为 last_index
|
|
|
|
|
+ for b in boxes:
|
|
|
|
|
+ if not b.get('used'):
|
|
|
|
|
+ last_idx = max(boxes.index(b)-1, 0)
|
|
|
|
|
+ break
|
|
|
|
|
+ return self._build_match_result(box['sorted_combo'], box['text'], similarity, max(start_idx, last_idx))
|
|
|
|
|
+
|
|
|
|
|
+ print(f" ✗ 匹配失败: '{cell_text[:15]}'")
|
|
|
|
|
+ return None
|
|
|
|
|
+
|
|
|
|
|
+ def _build_match_result(self, boxes: List[Dict], text: str,
|
|
|
|
|
+ score: float, last_index: int) -> Dict:
|
|
|
|
|
+ """构建匹配结果(使用原始坐标)"""
|
|
|
|
|
+
|
|
|
|
|
+ # 🔑 关键修复:使用 original_bbox(如果存在)
|
|
|
|
|
+ def get_original_bbox(box: Dict) -> List[int]:
|
|
|
|
|
+ return box.get('original_bbox', box['bbox'])
|
|
|
|
|
+
|
|
|
|
|
+ original_bboxes = [get_original_bbox(b) for b in boxes]
|
|
|
|
|
+
|
|
|
|
|
+ merged_bbox = [
|
|
|
|
|
+ min(b[0] for b in original_bboxes),
|
|
|
|
|
+ min(b[1] for b in original_bboxes),
|
|
|
|
|
+ max(b[2] for b in original_bboxes),
|
|
|
|
|
+ max(b[3] for b in original_bboxes)
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ return {
|
|
|
|
|
+ 'bbox': merged_bbox, # ✅ 使用原始坐标
|
|
|
|
|
+ 'text': text,
|
|
|
|
|
+ 'score': score,
|
|
|
|
|
+ 'paddle_indices': [b['paddle_bbox_index'] for b in boxes],
|
|
|
|
|
+ 'used_boxes': boxes,
|
|
|
|
|
+ 'last_used_index': last_index
|
|
|
|
|
+ }
|