|
|
@@ -1,6 +1,6 @@
|
|
|
import re
|
|
|
-from typing import Dict, List
|
|
|
-# ✅ 兼容相对导入和绝对导入
|
|
|
+from typing import Dict, List, Tuple, Optional
|
|
|
+
|
|
|
try:
|
|
|
from .data_type_detector import DataTypeDetector
|
|
|
from .similarity_calculator import SimilarityCalculator
|
|
|
@@ -10,6 +10,7 @@ except ImportError:
|
|
|
from similarity_calculator import SimilarityCalculator
|
|
|
from text_processor import TextProcessor
|
|
|
|
|
|
+
|
|
|
class TableComparator:
|
|
|
"""表格数据比较"""
|
|
|
|
|
|
@@ -21,13 +22,368 @@ class TableComparator:
|
|
|
self.content_similarity_threshold = 95
|
|
|
self.max_paragraph_window = 6
|
|
|
|
|
|
+ def find_matching_tables(self, tables1: List[List[List[str]]],
|
|
|
+ tables2: List[List[List[str]]]) -> List[Tuple[int, int, float]]:
|
|
|
+ """
|
|
|
+ 智能匹配两个文件中的表格
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List[Tuple[int, int, float]]: (table1_index, table2_index, similarity_score)
|
|
|
+ """
|
|
|
+ matches = []
|
|
|
+
|
|
|
+ for i, table1 in enumerate(tables1):
|
|
|
+ if not table1:
|
|
|
+ continue
|
|
|
+
|
|
|
+ best_match = None
|
|
|
+ best_score = 0
|
|
|
+
|
|
|
+ for j, table2 in enumerate(tables2):
|
|
|
+ if not table2:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 计算表格相似度
|
|
|
+ score = self._calculate_table_similarity(table1, table2)
|
|
|
+
|
|
|
+ if score > best_score:
|
|
|
+ best_score = score
|
|
|
+ best_match = j
|
|
|
+
|
|
|
+ if best_match is not None and best_score > 50: # 至少50%相似度
|
|
|
+ matches.append((i, best_match, best_score))
|
|
|
+ print(f" 📊 表格匹配: 文件1表格{i+1} ↔ 文件2表格{best_match+1} (相似度: {best_score:.1f}%)")
|
|
|
+
|
|
|
+ return matches
|
|
|
+
|
|
|
+ def _get_max_columns(self, table: List[List[str]]) -> int:
|
|
|
+ """获取表格的最大列数"""
|
|
|
+ if not table:
|
|
|
+ return 0
|
|
|
+ return max(len(row) for row in table)
|
|
|
+
|
|
|
+ def _calculate_table_similarity(self, table1: List[List[str]],
|
|
|
+ table2: List[List[str]]) -> float:
|
|
|
+ """计算两个表格的相似度"""
|
|
|
+ if not table1 or not table2:
|
|
|
+ return 0.0
|
|
|
+
|
|
|
+ # 1. 行数相似度 (权重: 15%)
|
|
|
+ row_count1 = len(table1)
|
|
|
+ row_count2 = len(table2)
|
|
|
+ row_similarity = 100 * (1 - abs(row_count1 - row_count2) / max(row_count1, row_count2))
|
|
|
+
|
|
|
+ # 2. 列数相似度 (权重: 15%) - ✅ 使用最大列数
|
|
|
+ col_count1 = self._get_max_columns(table1)
|
|
|
+ col_count2 = self._get_max_columns(table2)
|
|
|
+
|
|
|
+ max_cols = max(col_count1, col_count2)
|
|
|
+ min_cols = min(col_count1, col_count2)
|
|
|
+
|
|
|
+ if max_cols == 0:
|
|
|
+ col_similarity = 0
|
|
|
+ else:
|
|
|
+ # 如果列数差异在合理范围内(比如差1-2列),给予较高分数
|
|
|
+ col_diff = abs(col_count1 - col_count2)
|
|
|
+ if col_diff == 0:
|
|
|
+ col_similarity = 100
|
|
|
+ elif col_diff <= 2:
|
|
|
+ # 差1-2列,给予80-95分
|
|
|
+ col_similarity = 100 - (col_diff * 10)
|
|
|
+ else:
|
|
|
+ # 差异较大时,使用比例计算
|
|
|
+ col_similarity = 100 * (min_cols / max_cols)
|
|
|
+
|
|
|
+ print(f" 行数对比: {row_count1} vs {row_count2}, 相似度: {row_similarity:.1f}%")
|
|
|
+ print(f" 列数对比: {col_count1} vs {col_count2}, 相似度: {col_similarity:.1f}%")
|
|
|
+
|
|
|
+ # 3. 表头相似度 (权重: 50%) - ✅ 先检测表头位置
|
|
|
+ header_row_idx1 = self.detect_table_header_row(table1)
|
|
|
+ header_row_idx2 = self.detect_table_header_row(table2)
|
|
|
+
|
|
|
+ print(f" 表头位置: 文件1第{header_row_idx1+1}行, 文件2第{header_row_idx2+1}行")
|
|
|
+
|
|
|
+ header_similarity = 0
|
|
|
+ if header_row_idx1 < len(table1) and header_row_idx2 < len(table2):
|
|
|
+ header1 = table1[header_row_idx1]
|
|
|
+ header2 = table2[header_row_idx2]
|
|
|
+
|
|
|
+ if header1 and header2:
|
|
|
+ # ✅ 智能表头匹配
|
|
|
+ header_similarity = self._calculate_header_similarity_smart(header1, header2)
|
|
|
+
|
|
|
+ print(f" 表头相似度: {header_similarity:.1f}%")
|
|
|
+
|
|
|
+ # 4. 内容特征相似度 (权重: 20%)
|
|
|
+ content_similarity = self._calculate_content_features_similarity(table1, table2)
|
|
|
+
|
|
|
+ print(f" 内容特征相似度: {content_similarity:.1f}%")
|
|
|
+
|
|
|
+ # ✅ 调整权重分配
|
|
|
+ total_similarity = (
|
|
|
+ row_similarity * 0.15 + # 行数 15%
|
|
|
+ col_similarity * 0.15 + # 列数 15%
|
|
|
+ header_similarity * 0.50 + # 表头 50% (最重要)
|
|
|
+ content_similarity * 0.20 # 内容 20%
|
|
|
+ )
|
|
|
+
|
|
|
+ return total_similarity
|
|
|
+
|
|
|
+ def _calculate_header_similarity_smart(self, header1: List[str],
|
|
|
+ header2: List[str]) -> float:
|
|
|
+ """
|
|
|
+ 智能计算表头相似度
|
|
|
+
|
|
|
+ 处理以下情况:
|
|
|
+ 1. 列数不同但表头内容相似
|
|
|
+ 2. PaddleOCR可能将多行表头合并
|
|
|
+ 3. 表头顺序可能不同
|
|
|
+ """
|
|
|
+ if not header1 or not header2:
|
|
|
+ return 0.0
|
|
|
+
|
|
|
+ # 标准化表头
|
|
|
+ norm_headers1 = [self.normalize_header_text(h) for h in header1]
|
|
|
+ norm_headers2 = [self.normalize_header_text(h) for h in header2]
|
|
|
+
|
|
|
+ # 方法1: 精确匹配 (最高优先级)
|
|
|
+ common_headers = set(norm_headers1) & set(norm_headers2)
|
|
|
+ max_len = max(len(norm_headers1), len(norm_headers2))
|
|
|
+
|
|
|
+ if max_len == 0:
|
|
|
+ return 0.0
|
|
|
+
|
|
|
+ exact_match_ratio = len(common_headers) / max_len
|
|
|
+
|
|
|
+ # 方法2: 模糊匹配 (针对列数不同的情况)
|
|
|
+ fuzzy_matches = 0
|
|
|
+
|
|
|
+ # 使用较短的表头作为基准
|
|
|
+ if len(norm_headers1) <= len(norm_headers2):
|
|
|
+ base_headers = norm_headers1
|
|
|
+ compare_headers = norm_headers2
|
|
|
+ else:
|
|
|
+ base_headers = norm_headers2
|
|
|
+ compare_headers = norm_headers1
|
|
|
+
|
|
|
+ for base_h in base_headers:
|
|
|
+ best_similarity = 0
|
|
|
+ for comp_h in compare_headers:
|
|
|
+ similarity = self.calculator.calculate_text_similarity(base_h, comp_h)
|
|
|
+ if similarity > best_similarity:
|
|
|
+ best_similarity = similarity
|
|
|
+ if best_similarity == 100:
|
|
|
+ break
|
|
|
+
|
|
|
+ # 如果相似度超过70%,认为是匹配的
|
|
|
+ if best_similarity > 70:
|
|
|
+ fuzzy_matches += 1
|
|
|
+
|
|
|
+ fuzzy_match_ratio = fuzzy_matches / max_len if max_len > 0 else 0
|
|
|
+
|
|
|
+ # 方法3: 关键字匹配 (识别常见表头)
|
|
|
+ key_headers = {
|
|
|
+ 'date': ['日期', 'date', '时间', 'time'],
|
|
|
+ 'type': ['类型', 'type', '业务', 'business'],
|
|
|
+ 'number': ['号', 'no', '编号', 'id', '票据', 'bill'],
|
|
|
+ 'description': ['摘要', 'description', '说明', 'remark'],
|
|
|
+ 'amount': ['金额', 'amount', '借方', 'debit', '贷方', 'credit'],
|
|
|
+ 'balance': ['余额', 'balance'],
|
|
|
+ 'counterparty': ['对手', 'counterparty', '账户', 'account', '户名', 'name']
|
|
|
+ }
|
|
|
+
|
|
|
+ def categorize_header(h: str) -> set:
|
|
|
+ categories = set()
|
|
|
+ h_lower = h.lower()
|
|
|
+ for category, keywords in key_headers.items():
|
|
|
+ for keyword in keywords:
|
|
|
+ if keyword in h_lower:
|
|
|
+ categories.add(category)
|
|
|
+ return categories
|
|
|
+
|
|
|
+ categories1 = set()
|
|
|
+ for h in norm_headers1:
|
|
|
+ categories1.update(categorize_header(h))
|
|
|
+
|
|
|
+ categories2 = set()
|
|
|
+ for h in norm_headers2:
|
|
|
+ categories2.update(categorize_header(h))
|
|
|
+
|
|
|
+ common_categories = categories1 & categories2
|
|
|
+ all_categories = categories1 | categories2
|
|
|
+
|
|
|
+ category_match_ratio = len(common_categories) / len(all_categories) if all_categories else 0
|
|
|
+
|
|
|
+ # ✅ 综合三种方法,加权计算
|
|
|
+ final_similarity = (
|
|
|
+ exact_match_ratio * 0.4 + # 精确匹配 40%
|
|
|
+ fuzzy_match_ratio * 0.4 + # 模糊匹配 40%
|
|
|
+ category_match_ratio * 0.2 # 语义匹配 20%
|
|
|
+ ) * 100
|
|
|
+
|
|
|
+ print(f" 精确匹配: {exact_match_ratio:.1%}, 模糊匹配: {fuzzy_match_ratio:.1%}, 语义匹配: {category_match_ratio:.1%}")
|
|
|
+
|
|
|
+ return final_similarity
|
|
|
+
|
|
|
+ def _calculate_content_features_similarity(self, table1: List[List[str]],
|
|
|
+ table2: List[List[str]]) -> float:
|
|
|
+ """计算表格内容特征相似度"""
|
|
|
+ # 统计数字、日期等特征
|
|
|
+ features1 = self._extract_table_features(table1)
|
|
|
+ features2 = self._extract_table_features(table2)
|
|
|
+
|
|
|
+ # 比较特征
|
|
|
+ similarity_scores = []
|
|
|
+
|
|
|
+ for key in ['numeric_ratio', 'date_ratio', 'empty_ratio']:
|
|
|
+ if key in features1 and key in features2:
|
|
|
+ diff = abs(features1[key] - features2[key])
|
|
|
+ similarity_scores.append(100 * (1 - diff))
|
|
|
+
|
|
|
+ return sum(similarity_scores) / len(similarity_scores) if similarity_scores else 0
|
|
|
+
|
|
|
+ def _extract_table_features(self, table: List[List[str]]) -> Dict:
|
|
|
+ """提取表格特征"""
|
|
|
+ total_cells = 0
|
|
|
+ numeric_cells = 0
|
|
|
+ date_cells = 0
|
|
|
+ empty_cells = 0
|
|
|
+
|
|
|
+ for row in table:
|
|
|
+ for cell in row:
|
|
|
+ total_cells += 1
|
|
|
+
|
|
|
+ if not cell or cell.strip() == '':
|
|
|
+ empty_cells += 1
|
|
|
+ continue
|
|
|
+
|
|
|
+ if self.detector.is_numeric(cell):
|
|
|
+ numeric_cells += 1
|
|
|
+
|
|
|
+ if self.detector.extract_datetime(cell):
|
|
|
+ date_cells += 1
|
|
|
+
|
|
|
+ return {
|
|
|
+ 'numeric_ratio': numeric_cells / total_cells if total_cells > 0 else 0,
|
|
|
+ 'date_ratio': date_cells / total_cells if total_cells > 0 else 0,
|
|
|
+ 'empty_ratio': empty_cells / total_cells if total_cells > 0 else 0,
|
|
|
+ 'total_cells': total_cells
|
|
|
+ }
|
|
|
+
|
|
|
def normalize_header_text(self, text: str) -> str:
|
|
|
"""标准化表头文本"""
|
|
|
+ # 移除括号内容
|
|
|
text = re.sub(r'[((].*?[))]', '', text)
|
|
|
+ # 移除空格
|
|
|
text = re.sub(r'\s+', '', text)
|
|
|
+ # 只保留字母、数字和中文
|
|
|
text = re.sub(r'[^\w\u4e00-\u9fff]', '', text)
|
|
|
return text.lower().strip()
|
|
|
|
|
|
+ def detect_table_header_row(self, table: List[List[str]]) -> int:
|
|
|
+ """
|
|
|
+ 智能检测表格的表头行索引
|
|
|
+
|
|
|
+ 检测策略:
|
|
|
+ 1. 查找包含表头关键字最多的行
|
|
|
+ 2. 确认下一行是数据行
|
|
|
+ 3. 避免将合并单元格的元数据行误判为表头
|
|
|
+ """
|
|
|
+ if not table:
|
|
|
+ return 0
|
|
|
+
|
|
|
+ header_keywords = [
|
|
|
+ '日期', 'date', '时间', 'time',
|
|
|
+ '类型', 'type', '业务', 'business',
|
|
|
+ '号', 'no', '编号', 'id', '票据', 'bill',
|
|
|
+ '摘要', 'description', '说明', 'remark',
|
|
|
+ '金额', 'amount', '借方', 'debit', '贷方', 'credit',
|
|
|
+ '余额', 'balance',
|
|
|
+ '对手', 'counterparty', '账户', 'account', '户名', 'name'
|
|
|
+ ]
|
|
|
+
|
|
|
+ best_header_row = 0
|
|
|
+ best_score = 0
|
|
|
+
|
|
|
+ for row_idx, row in enumerate(table[:5]): # 只检查前5行
|
|
|
+ if not row:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 计算关键字匹配分数
|
|
|
+ keyword_count = 0
|
|
|
+ non_empty_cells = 0
|
|
|
+
|
|
|
+ for cell in row:
|
|
|
+ cell_text = str(cell).strip()
|
|
|
+ if cell_text:
|
|
|
+ non_empty_cells += 1
|
|
|
+ cell_lower = cell_text.lower()
|
|
|
+
|
|
|
+ for keyword in header_keywords:
|
|
|
+ if keyword in cell_lower:
|
|
|
+ keyword_count += 1
|
|
|
+ break
|
|
|
+
|
|
|
+ # 避免空行或几乎空的行
|
|
|
+ if non_empty_cells < 3:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 计算得分:关键字比例 + 列数奖励
|
|
|
+ keyword_ratio = keyword_count / non_empty_cells if non_empty_cells > 0 else 0
|
|
|
+ column_bonus = min(non_empty_cells / 5, 1.0) # 列数越多,奖励越高
|
|
|
+ score = keyword_ratio * 0.7 + column_bonus * 0.3
|
|
|
+
|
|
|
+ # 如果下一行是数据行,加分
|
|
|
+ if row_idx + 1 < len(table):
|
|
|
+ next_row = table[row_idx + 1]
|
|
|
+ if self._is_data_row(next_row):
|
|
|
+ score += 0.2
|
|
|
+
|
|
|
+ if score > best_score:
|
|
|
+ best_score = score
|
|
|
+ best_header_row = row_idx
|
|
|
+
|
|
|
+ # 如果最佳得分太低,返回0(第一行)
|
|
|
+ if best_score < 0.3:
|
|
|
+ print(f" ⚠️ 未检测到明确表头,默认使用第1行 (得分: {best_score:.2f})")
|
|
|
+ return 0
|
|
|
+
|
|
|
+ print(f" 📍 检测到表头在第 {best_header_row + 1} 行 (得分: {best_score:.2f})")
|
|
|
+ return best_header_row
|
|
|
+
|
|
|
+ def _is_data_row(self, row: List[str]) -> bool:
|
|
|
+ """判断是否为数据行"""
|
|
|
+ if not row:
|
|
|
+ return False
|
|
|
+
|
|
|
+ data_pattern_count = 0
|
|
|
+ non_empty_count = 0
|
|
|
+
|
|
|
+ for cell in row:
|
|
|
+ cell_text = str(cell).strip()
|
|
|
+ if not cell_text:
|
|
|
+ continue
|
|
|
+
|
|
|
+ non_empty_count += 1
|
|
|
+
|
|
|
+ # 包含数字
|
|
|
+ if re.search(r'\d', cell_text):
|
|
|
+ data_pattern_count += 1
|
|
|
+
|
|
|
+ # 包含日期格式
|
|
|
+ if re.search(r'\d{4}[-/年]\d{1,2}[-/月]\d{1,2}', cell_text):
|
|
|
+ data_pattern_count += 1
|
|
|
+
|
|
|
+ # 包含金额格式
|
|
|
+ if re.search(r'-?\d+[,,]?\d*\.?\d+', cell_text):
|
|
|
+ data_pattern_count += 1
|
|
|
+
|
|
|
+ if non_empty_count == 0:
|
|
|
+ return False
|
|
|
+
|
|
|
+ # 至少30%的单元格包含数据特征
|
|
|
+ return data_pattern_count / non_empty_count >= 0.3
|
|
|
+
|
|
|
def compare_table_headers(self, headers1: List[str], headers2: List[str]) -> Dict:
|
|
|
"""比较表格表头"""
|
|
|
result = {
|
|
|
@@ -74,54 +430,6 @@ class TableComparator:
|
|
|
|
|
|
return result
|
|
|
|
|
|
- def detect_table_header_row(self, table: List[List[str]]) -> int:
|
|
|
- """智能检测表格的表头行索引"""
|
|
|
- header_keywords = [
|
|
|
- '序号', '编号', '时间', '日期', '名称', '类型', '金额', '数量', '单价',
|
|
|
- '备注', '说明', '状态', '类别', '方式', '账号', '单号', '订单',
|
|
|
- '交易单号', '交易时间', '交易类型', '收/支', '支出', '收入',
|
|
|
- '交易方式', '交易对方', '商户单号', '付款方式', '收款方',
|
|
|
- 'no', 'id', 'time', 'date', 'name', 'type', 'amount', 'status'
|
|
|
- ]
|
|
|
-
|
|
|
- for row_idx, row in enumerate(table):
|
|
|
- if not row:
|
|
|
- continue
|
|
|
-
|
|
|
- keyword_count = 0
|
|
|
- for cell in row:
|
|
|
- cell_lower = cell.lower().strip()
|
|
|
- for keyword in header_keywords:
|
|
|
- if keyword in cell_lower:
|
|
|
- keyword_count += 1
|
|
|
- break
|
|
|
-
|
|
|
- if keyword_count >= len(row) * 0.4 and keyword_count >= 2:
|
|
|
- if row_idx + 1 < len(table):
|
|
|
- next_row = table[row_idx + 1]
|
|
|
- if self._is_data_row(next_row):
|
|
|
- print(f" 📍 检测到表头在第 {row_idx + 1} 行")
|
|
|
- return row_idx
|
|
|
-
|
|
|
- print(f" ⚠️ 未检测到明确表头,默认使用第1行")
|
|
|
- return 0
|
|
|
-
|
|
|
- def _is_data_row(self, row: List[str]) -> bool:
|
|
|
- """判断是否为数据行"""
|
|
|
- data_pattern_count = 0
|
|
|
-
|
|
|
- for cell in row:
|
|
|
- if not cell:
|
|
|
- continue
|
|
|
-
|
|
|
- if re.search(r'\d', cell):
|
|
|
- data_pattern_count += 1
|
|
|
-
|
|
|
- if re.search(r'\d{4}[-/年]\d{1,2}[-/月]\d{1,2}', cell):
|
|
|
- data_pattern_count += 1
|
|
|
-
|
|
|
- return data_pattern_count >= len(row) * 0.5
|
|
|
-
|
|
|
def compare_cell_value(self, value1: str, value2: str, column_type: str,
|
|
|
column_name: str = '') -> Dict:
|
|
|
"""比较单元格值"""
|