浏览代码

feat: 使用行级动态规划优化 HTML 表格单元格与 PaddleOCR 匹配

zhch158_admin 3 天之前
父节点
当前提交
f79ce70bd1
共有 1 个文件被更改,包括 199 次插入463 次删除
  1. 199 463
      merger/table_cell_matcher.py

+ 199 - 463
merger/table_cell_matcher.py

@@ -39,19 +39,7 @@ class TableCellMatcher:
     def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
                                   start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
         """
-        为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
-        
-        策略:
-        1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
-        2. 将筛选后的 boxes 按行分组
-        3. 智能匹配 HTML 行与 paddle 行组
-        4. 在匹配的组内查找单元格
-    
-        Args:
-            html: HTML 表格
-            paddle_text_boxes: 全部 paddle OCR 结果
-            start_pointer: 开始位置
-            table_bbox: 表格边界框 [x1, y1, x2, y2]
+        为 HTML 表格添加 bbox 信息(优化版:使用行级动态规划)
         """
         soup = BeautifulSoup(html, 'html.parser')
         cells = []
@@ -68,7 +56,6 @@ class TableCellMatcher:
             return str(soup), cells, start_pointer
         
         print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
-        print(f"   边界: {actual_table_bbox}")
         
         # 🔑 第二步:将表格区域的 boxes 按行分组
         grouped_boxes = self._group_paddle_boxes_by_rows(
@@ -84,16 +71,13 @@ class TableCellMatcher:
         
         grouped_boxes.sort(key=lambda g: g['y_center'])
         
-        print(f"   分组: {len(grouped_boxes)} 行")
-        
         # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
         html_rows = soup.find_all('tr')
         row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
         
-        print(f"   HTML行: {len(html_rows)} 行")
-        print(f"   映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
+        print(f"   HTML行: {len(html_rows)} 行, 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
         
-        # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
+        # 🔑 第五步:遍历 HTML 表格,使用 DP 进行行内匹配
         for row_idx, row in enumerate(html_rows):
             group_indices = row_mapping.get(row_idx, [])
             
@@ -106,263 +90,244 @@ class TableCellMatcher:
                 if group_idx < len(grouped_boxes):
                     current_boxes.extend(grouped_boxes[group_idx]['boxes'])
             
+            # 再次按 x 排序确保顺序
             current_boxes.sort(key=lambda x: x['bbox'][0])
             
-            # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
             html_cells = row.find_all(['td', 'th'])
-            
             if not html_cells:
                 continue
             
-            # 🔑 预估列边界(基于 x 坐标分布)
-            col_boundaries = self._estimate_column_boundaries(
-                current_boxes, 
-                len(html_cells)
-            )
-            
-            print(f"   行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
-            
-            # 🎯 关键改进:顺序指针匹配
-            box_pointer = 0  # 当前行的 boxes 指针
+            # 🎯 核心变更:使用行级 DP 替代原来的顺序匹配
+            # 输入:HTML 单元格列表, OCR Box 列表
+            # 输出:匹配结果列表
+            dp_results = self._match_cells_in_row_dp(html_cells, current_boxes)
             
-            for col_idx, cell in enumerate(html_cells):
-                cell_text = cell.get_text(strip=True)
+            print(f"   行 {row_idx + 1}: {len(html_cells)} 列, 匹配到 {len(dp_results)} 个单元格")
+
+            # 解析 DP 结果并填充 cells 列表
+            for res in dp_results:
+                cell_idx = res['cell_idx']
+                match_info = res['match_info']
                 
-                if not cell_text:
-                    continue
+                cell_element = html_cells[cell_idx]
+                cell_text = cell_element.get_text(strip=True)
                 
-                # 🔑 从当前指针开始匹配
-                matched_result = self._match_cell_sequential(
-                    cell_text,
-                    current_boxes,
-                    col_boundaries,
-                    box_pointer
-                )
+                matched_boxes = match_info['boxes']
+                matched_text = match_info['text']
+                score = match_info['score']
                 
-                if matched_result:
-                    merged_bbox = matched_result['bbox']
-                    merged_text = matched_result['text']
-                    
-                    cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
-                    cell['data-score'] = f"{matched_result['score']:.4f}"
-                    cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
-                    
-                    cells.append({
-                        'type': 'table_cell',
-                        'text': cell_text,
-                        'matched_text': merged_text,
-                        'bbox': merged_bbox,
-                        'row': row_idx + 1,
-                        'col': col_idx + 1,
-                        'score': matched_result['score'],
-                        'paddle_bbox_indices': matched_result['paddle_indices']
-                    })
-                    
-                    # 标记已使用
-                    for box in matched_result['used_boxes']:
-                        box['used'] = True
-                    
-                    # 🎯 移动指针到最后使用的 box 之后
-                    box_pointer = matched_result['last_used_index'] + 1
-                    
-                    print(f"      列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})")
-        
-        # 计算新的指针位置
+                # 标记 box 为已使用
+                paddle_indices = []
+                for box in matched_boxes:
+                    box['used'] = True
+                    paddle_indices.append(box.get('paddle_bbox_index', -1))
+                
+                # 计算合并后的 bbox (使用原始坐标 original_bbox 优先)
+                merged_bbox = self._merge_boxes_bbox(matched_boxes)
+                
+                # 注入 HTML 属性
+                cell_element['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
+                cell_element['data-score'] = f"{score:.4f}"
+                cell_element['data-paddle-indices'] = str(paddle_indices)
+                
+                # 构建返回结构 (保持与原函数一致)
+                cells.append({
+                    'type': 'table_cell',
+                    'text': cell_text,
+                    'matched_text': matched_text,
+                    'bbox': merged_bbox,
+                    'row': row_idx + 1,
+                    'col': cell_idx + 1,
+                    'score': score,
+                    'paddle_bbox_indices': paddle_indices
+                })
+                
+                print(f"      列 {cell_idx + 1}: '{cell_text[:15]}...' 匹配 {len(matched_boxes)} 个box (分值: {score:.1f})")
+
+        # 计算新的指针位置 (逻辑保持不变:基于 used 标记)
         used_count = sum(1 for box in table_region_boxes if box.get('used'))
         new_pointer = start_pointer + used_count
         
-        print(f"   匹配: {len(cells)} 个单元格")
+        print(f"   总计匹配: {len(cells)} 个单元格")
         
         return str(soup), cells, new_pointer
 
+    def _merge_boxes_bbox(self, boxes: List[Dict]) -> List[int]:
+        """辅助函数:合并多个 box 的坐标"""
+        if not boxes:
+            return [0, 0, 0, 0]
+        
+        # 优先使用 original_bbox,如果没有则使用 bbox
+        def get_coords(b):
+            return b.get('original_bbox', b['bbox'])
+            
+        x1 = min(get_coords(b)[0] for b in boxes)
+        y1 = min(get_coords(b)[1] for b in boxes)
+        x2 = max(get_coords(b)[2] for b in boxes)
+        y2 = max(get_coords(b)[3] for b in boxes)
+        return [x1, y1, x2, y2]
 
-    def _estimate_column_boundaries(self, boxes: List[Dict], 
-                                    num_cols: int) -> List[Tuple[int, int]]:
+    def _match_cells_in_row_dp(self, html_cells: List, row_boxes: List[Dict]) -> List[Dict]:
         """
-        估算列边界(改进版:处理同列多文本框)
-        
-        Args:
-            boxes: 当前行的所有 boxes(已按 x 排序)
-            num_cols: HTML 表格的列数
-        
-        Returns:
-            列边界列表 [(x_start, x_end), ...]
+        使用动态规划进行行内单元格匹配
+        目标:找到一种分配方案,使得整行的匹配总分最高
         """
-        if not boxes:
-            return []
+        n_cells = len(html_cells)
+        n_boxes = len(row_boxes)
         
-        # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
-        x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance)
+        # dp[i][j] 表示:前 i 个单元格 消耗了 前 j 个 boxes 的最大得分
+        dp = np.full((n_cells + 1, n_boxes + 1), -np.inf)
+        dp[0][0] = 0
         
-        print(f"      X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
+        # path[i][j] = (prev_j, matched_info) 用于回溯
+        path = {}
         
-        # 获取所有 x 坐标范围
-        x_min = min(cluster['x_min'] for cluster in x_clusters)
-        x_max = max(cluster['x_max'] for cluster in x_clusters)
+        # 允许合并的最大 box 数量
+        MAX_MERGE = 5 
         
-        # 🎯 策略 1: 如果聚类数量<=列数接近
-        if len(x_clusters) <= num_cols:
-            # 直接使用聚类边界
-            boundaries = [(cluster['x_min'], cluster['x_max']) 
-                        for cluster in x_clusters]
-            return boundaries
-        
-        # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇)
-        if len(x_clusters) > num_cols:
-            print(f"      ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
-            
-            # 合并相近的簇
-            merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
+        for i in range(1, n_cells + 1):
+            cell = html_cells[i-1]
+            cell_text = cell.get_text(strip=True)
             
-            boundaries = [(cluster['x_min'], cluster['x_max']) 
-                        for cluster in merged_clusters]
-            return boundaries
-        
-        return []
+            # 如果单元格为空,允许继承状态(相当于跳过该单元格)
+            if not cell_text:
+                for j in range(n_boxes + 1):
+                    if dp[i-1][j] > -np.inf:
+                        dp[i][j] = dp[i-1][j]
+                        path[(i, j)] = (j, None)
+                continue
 
+            # 遍历当前 box 指针 j
+            for j in range(n_boxes + 1):
+                # 策略 A: 当前单元格不匹配任何 box (Cell Missing / OCR漏检)
+                if dp[i-1][j] > dp[i][j]:
+                    dp[i][j] = dp[i-1][j]
+                    path[(i, j)] = (j, None)
 
-    def _cluster_boxes_by_x(self, boxes: List[Dict], 
-                    x_tolerance: int = 3) -> List[Dict]:
+                # 策略 B: 当前单元格匹配了 k 个 boxes (从 prev_j 到 j)
+                # 限制搜索范围:最多往前看 MAX_MERGE 个 box
+                search_limit = max(0, j - MAX_MERGE)
+                
+                # 允许中间跳过少量噪音 box (例如 prev_j 到 j 之间跨度大,但只取了部分)
+                # 但为了简化,这里假设是连续取用 row_boxes[prev_j:j]
+                for prev_j in range(j - 1, search_limit - 1, -1):
+                    if dp[i-1][prev_j] == -np.inf:
+                        continue
+                        
+                    candidate_boxes = row_boxes[prev_j:j]
+                    
+                    # 组合文本 (使用空格连接)
+                    merged_text = " ".join([b['text'] for b in candidate_boxes])
+                    
+                    # 计算得分
+                    score = self._compute_match_score(cell_text, merged_text)
+                    
+                    # 只有及格的匹配才考虑
+                    if score > 50: 
+                        new_score = dp[i-1][prev_j] + score
+                        if new_score > dp[i][j]:
+                            dp[i][j] = new_score
+                            path[(i, j)] = (prev_j, {
+                                'text': merged_text,
+                                'boxes': candidate_boxes,
+                                'score': score
+                            })
+
+        # --- 回溯找最优解 ---
+        best_j = np.argmax(dp[n_cells])
+        if dp[n_cells][best_j] == -np.inf:
+            return [] 
+            
+        results = []
+        curr_i, curr_j = n_cells, best_j
+        
+        while curr_i > 0:
+            step_info = path.get((curr_i, curr_j))
+            if step_info:
+                prev_j, match_info = step_info
+                if match_info:
+                    results.append({
+                        'cell_idx': curr_i - 1,
+                        'match_info': match_info
+                    })
+                curr_j = prev_j
+            curr_i -= 1
+            
+        return results[::-1]
+
+    def _compute_match_score(self, cell_text: str, box_text: str) -> float:
         """
-        按 x 坐标聚类(合并同列的多个文本框)
-        
-        Args:
-            boxes: 文本框列表
-            x_tolerance: X坐标容忍度
-        
-        Returns:
-            聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
+        纯粹的评分函数:计算单元格文本与候选 Box 文本的匹配得分
+        包含所有防御逻辑
         """
-        if not boxes:
-            return []
-        
-        # 按左边界 x 坐标排序
-        sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
-        
-        clusters = []
-        current_cluster = None
+        # 1. 预处理
+        cell_norm = self.text_matcher.normalize_text(cell_text)
+        box_norm = self.text_matcher.normalize_text(box_text)
         
-        for box in sorted_boxes:
-            bbox = box['bbox']
-            x_start = bbox[0]
-            x_end = bbox[2]
-            
-            if current_cluster is None:
-                # 开始新簇
-                current_cluster = {
-                    'x_min': x_start,
-                    'x_max': x_end,
-                    'boxes': [box]
-                }
-            else:
-                # 🔑 检查是否属于当前簇(修正后的逻辑)
-                # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min
-                # 2. 或者距离在容忍度内
-            
-                has_overlap = (x_start <= current_cluster['x_max'] and 
-                              x_end >= current_cluster['x_min'])
-            
-                is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance
+        if not cell_norm or not box_norm:
+            return 0.0
             
-                if has_overlap or is_close:
-                    # 合并到当前簇
-                    current_cluster['boxes'].append(box)
-                    current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
-                    current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
-                else:
-                    # 保存当前簇,开始新簇
-                    clusters.append(current_cluster)
-                    current_cluster = {
-                        'x_min': x_start,
-                        'x_max': x_end,
-                        'boxes': [box]
-                    }
-    
-        # 添加最后一簇
-        if current_cluster:
-            clusters.append(current_cluster)
+        # --- ⚡️ 快速防御 ---
+        len_cell = len(cell_norm)
+        len_box = len(box_norm)
         
-        return clusters
+        # 长度差异过大直接 0 分 (除非是包含关系且特征明显)
+        if len_box > len_cell * 3 + 5:
+            if len_cell < 5: return 0.0
 
-
-    def _merge_close_clusters(self, clusters: List[Dict], 
-                            target_count: int) -> List[Dict]:
-        """
-        合并相近的簇,直到数量等于目标列数
+        # --- 🔍 核心相似度计算 ---
+        cell_proc = self._preprocess_text_for_matching(cell_text)
+        box_proc = self._preprocess_text_for_matching(box_text)
         
-        Args:
-            clusters: 聚类列表
-            target_count: 目标列数
+        # A. Token Sort (解决乱序)
+        score_sort = fuzz.token_sort_ratio(cell_proc, box_proc)
         
-        Returns:
-            合并后的聚类列表
-        """
-        if len(clusters) <= target_count:
-            return clusters
+        # B. Partial (解决截断/包含)
+        score_partial = fuzz.partial_ratio(cell_norm, box_norm)
         
-        # 复制一份,避免修改原数据
-        working_clusters = [c.copy() for c in clusters]
+        # C. Subsequence (解决噪音插入)
+        score_subseq = 0.0
+        if len_cell > 5:
+            score_subseq = self._calculate_subsequence_score(cell_norm, box_norm)
+
+        # --- 🛡️ 深度防御逻辑 ---
         
-        while len(working_clusters) > target_count:
-            # 找到距离最近的两个簇
-            min_distance = float('inf')
-            merge_idx = 0
-            
-            for i in range(len(working_clusters) - 1):
-                distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
-                if distance < min_distance:
-                    min_distance = distance
-                    merge_idx = i
+        # 1. 短文本防御
+        if score_partial > 80:
+            import re
+            has_content = lambda t: bool(re.search(r'[a-zA-Z0-9\u4e00-\u9fa5]', t))
             
-            # 合并
-            cluster1 = working_clusters[merge_idx]
-            cluster2 = working_clusters[merge_idx + 1]
+            # 纯符号防御
+            if not has_content(cell_norm) and has_content(box_norm):
+                if len_box > len_cell + 2: score_partial = 0.0
             
-            merged_cluster = {
-                'x_min': cluster1['x_min'],
-                'x_max': cluster2['x_max'],
-                'boxes': cluster1['boxes'] + cluster2['boxes']
-            }
-            
-            # 替换
-            working_clusters[merge_idx] = merged_cluster
-            working_clusters.pop(merge_idx + 1)
-        
-        return working_clusters
+            # 微小碎片防御
+            elif len_cell <= 2 and len_box > 8:
+                score_partial = 0.0
+                
+            # 覆盖率防御
+            else:
+                coverage = len_cell / len_box if len_box > 0 else 0
+                if coverage < 0.3 and score_sort < 45:
+                    score_partial = 0.0
 
+        # 2. 子序列防御
+        if score_subseq > 80:
+            if len_box > len_cell * 1.5:
+                import re
+                if re.match(r'^[\d\-\:\.\s]+$', cell_norm) and len_cell < 12:
+                    score_subseq = 0.0
 
-    def _get_boxes_in_column(self, boxes: List[Dict], 
-                            boundaries: List[Tuple[int, int]],
-                            col_idx: int) -> List[Dict]:
-        """
-        获取指定列范围内的 boxes(改进版:包含重叠)
-        
-        Args:
-            boxes: 当前行的所有 boxes
-            boundaries: 列边界
-            col_idx: 列索引
-        
-        Returns:
-            该列的 boxes
-        """
-        if col_idx >= len(boundaries):
-            return []
+        # --- 📊 综合评分 ---
+        final_score = max(score_sort, score_partial, score_subseq)
         
-        x_start, x_end = boundaries[col_idx]
-        
-        col_boxes = []
-        for box in boxes:
-            bbox = box['bbox']
-            box_x_start = bbox[0]
-            box_x_end = bbox[2]
+        # 精确匹配奖励
+        if cell_norm == box_norm:
+            final_score = 100.0
+        elif cell_norm in box_norm:
+            final_score = min(100, final_score + 5)
             
-            # 🔑 改进:检查是否有重叠(不只是中心点)
-            overlap = not (box_x_start > x_end or box_x_end < x_start)
-            
-            if overlap:
-                col_boxes.append(box)
-        
-        return col_boxes
+        return final_score
 
 
     def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
@@ -942,232 +907,3 @@ class TableCellMatcher:
             
         final_score = (match_rate * 100) - penalty
         return max(0, final_score)
-
-    def _match_cell_sequential(self, cell_text: str, 
-                            boxes: List[Dict],
-                            col_boundaries: List[Tuple[int, int]],
-                            start_idx: int) -> Optional[Dict]:
-        """
-        🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配
-        """
-        cell_text_normalized = self.text_matcher.normalize_text(cell_text)
-        cell_text_processed = self._preprocess_text_for_matching(cell_text)
-        
-        if len(cell_text_normalized) < 1:
-            return None
-
-        # 🔑 找到第一个未使用的 box
-        first_unused_idx = start_idx
-        while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'):
-            first_unused_idx += 1
-        
-        if first_unused_idx >= len(boxes):
-            return None
-
-        # 🔑 策略 1: 单个 box 精确匹配
-        for box in boxes[first_unused_idx:]:
-            box_text = self.text_matcher.normalize_text(box['text'])
-            
-            if cell_text_normalized == box_text:
-                return self._build_match_result([box], box['text'], 100.0, boxes.index(box))
-        
-        # 🔑 策略 2: 多个 boxes 合并匹配
-        unused_boxes = [b for b in boxes[first_unused_idx:] if not b.get('used')]
-        # 合并同列的 boxes 合并
-        merged_bboxes = []
-        for col_idx in range(len(col_boundaries)):
-            combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx)
-            if len(combo_boxes) > 0:
-                sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0]))
-                # 🎯 改进:使用空格连接,以便于 token_sort_ratio 进行乱序匹配
-                merged_text = ' '.join([b['text'] for b in sorted_combo])
-                merged_bboxes.append({
-                    'text': merged_text,
-                    'sorted_combo': sorted_combo
-                })
-
-        for box in merged_bboxes:
-            # 1. 精确匹配
-            merged_text_normalized = self.text_matcher.normalize_text(box['text'])
-            if cell_text_normalized == merged_text_normalized:
-                last_sort_idx = boxes.index(box['sorted_combo'][-1])
-                return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx)
-            
-            # 2. 子串匹配
-            is_substring = (cell_text_normalized in merged_text_normalized or 
-                        merged_text_normalized in cell_text_normalized)
-            
-            # 3. 模糊匹配
-            # 🎯 改进:使用预处理后的文本进行 token_sort_ratio 计算
-            box_text_processed = self._preprocess_text_for_matching(box['text'])
-            
-            # token_sort_ratio: 自动分词并排序比较,解决 OCR 结果顺序与 HTML 不一致的问题
-            token_sort_sim = fuzz.token_sort_ratio(cell_text_processed, box_text_processed)
-            
-            # partial_ratio: 子串模糊匹配,解决 OCR 识别错误
-            partial_sim = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
-            
-            # 🛡️ 增强版防御:防止“短文本”误匹配“长文本”
-            if partial_sim > 80:
-                len_cell = len(cell_text_normalized)
-                len_box = len(merged_text_normalized)
-                
-                # 确定短方和长方
-                if len_cell < len_box:
-                    len_short, len_long = len_cell, len_box
-                    text_short = cell_text_normalized
-                    text_long = merged_text_normalized
-                else:
-                    len_short, len_long = len_box, len_cell
-                    text_short = merged_text_normalized
-                    text_long = cell_text_normalized
-                
-                # 🎯 修正:检测有效内容 (字母、数字、汉字)
-                # 使用 Unicode 范围匹配汉字: \u4e00-\u9fa5
-                import re
-                def has_valid_content(text):
-                    return bool(re.search(r'[a-zA-Z0-9\u4e00-\u9fa5]', text))
-
-                short_has_content = has_valid_content(text_short)
-                long_has_content = has_valid_content(text_long)
-                
-                # 🛑 拒绝条件 1: 短方是纯符号 (无有效内容),且长方有内容
-                # 例如: Cell="-" vs Box="-200" (拦截)
-                # 例如: Cell="中国银行" vs Box="中国银行储蓄卡" (不拦截,因为都有汉字)
-                if not short_has_content and long_has_content:
-                     # 允许例外:如果长方也很短 (比如 Cell="-" Box="- "),可能只是多了个空格,不拦截
-                     if len_long > len_short + 2:
-                        print(f"         ⚠️ 拒绝纯符号部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
-                        partial_sim = 0.0
-
-                # 🛑 拒绝条件 2: 短方虽然有内容,但太短了 (信息量不足)
-                elif short_has_content:
-                    # 如果短方只有 1 个字符,且长方超过 3 个字符 -> 拒绝
-                    if len_short == 1 and len_long > 3:
-                        print(f"         ⚠️ 拒绝单字符部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
-                        partial_sim = 0.0
-                    # 如果短方只有 2 个字符,且长方超过 8 个字符 -> 拒绝
-                    elif len_short == 2 and len_long > 8:
-                        print(f"         ⚠️ 拒绝微小碎片部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
-                        partial_sim = 0.0
-
-                    # 🆕 新增条件 3: 覆盖率过低 (防止 "2024" 匹配 "ID2024...")
-                    # 场景: Cell 是长文本, Box 是短文本, 恰好包含在 Cell 中
-                    # 逻辑: 如果覆盖率 < 30% 且 整体相似度(token_sort) < 45,说明 Box 缺失了 Cell 的绝大部分内容
-                    else:
-                        coverage = len_short / len_long if len_long > 0 else 0
-                        if coverage < 0.3 and token_sort_sim < 45:
-                             print(f"         ⚠️ 拒绝低覆盖率部分匹配: '{text_short}' in '{text_long}' (cov={coverage:.2f})")
-                             partial_sim = 0.0
-
-            # 🎯 新增:token_set_ratio (集合匹配)
-            # 专门解决:目标文本被 OCR 文本中的噪音隔开的情况
-            # 例如 Target="A B", OCR="A noise B" -> token_set_ratio 会很高
-            token_set_sim = fuzz.token_set_ratio(cell_text_processed, box_text_processed)
-
-            # 🎯 策略 4: 重构匹配 (Reconstruction Match) - 解决 ID 被噪音打断的问题
-            # 逻辑:提取 OCR 中所有属于 Target 子串的 token,拼起来再比
-            reconstruct_sim = 0.0
-            if len(cell_text_normalized) > 10: # 仅对长文本启用,防止短文本误判
-                # 使用预处理后的文本分词 (已处理中文/数字间隔)
-                box_tokens = box_text_processed.split()
-                # 筛选出所有是目标文本子串的 token
-                valid_tokens = []
-                for token in box_tokens:
-                    # 忽略太短的 token (除非目标也很短),防止 "1" 这种误匹配
-                    if len(token) < 2 and len(cell_text_normalized) > 5:
-                        continue
-                    if token in cell_text_normalized:
-                        valid_tokens.append(token)
-                
-                if valid_tokens:
-                    # 拼接回原始形态
-                    reconstructed_text = "".join(valid_tokens)
-                    reconstruct_sim = fuzz.ratio(cell_text_normalized, reconstructed_text)
-                    if reconstruct_sim > 90:
-                         print(f"         🧩 重构匹配生效: '{reconstructed_text}' (sim={reconstruct_sim})")
-
-            # 🎯 策略 5: 子序列匹配 (Subsequence Match) - 解决粘连噪音问题
-            # 专门针对: '1544...1050' + '2024-08-10' + '0433...' 这种场景
-            subseq_sim = 0.0
-            if len(cell_text_normalized) > 8: # 仅对较长文本启用
-                subseq_sim = self._calculate_subsequence_score(cell_text_normalized, merged_text_normalized)
-                # 🛡️ 关键修复:长度和类型防御
-                if subseq_sim > 80:
-                    len_cell = len(cell_text_normalized)
-                    len_box = len(merged_text_normalized)
-                    
-                    # 1. 长度差异过大 (Box 比 Cell 长很多)
-                    if len_box > len_cell * 1.5:
-                        # 2. 且 Cell 是数字/日期/时间类型
-                        import re
-                        if re.match(r'^[\d\-\:\.\s]+$', cell_text_normalized):
-                            # 🧠 智能豁免:如果 Cell 本身很长 (例如 > 12字符),说明是长ID
-                            # 长ID即使夹杂了噪音 (如 "ID...日期...文字"),只要子序列匹配高,通常也是对的
-                            # 只有短文本 (如 "2024") 才需要严格防御
-                            if len_cell < 12:
-                                print(f"         ⚠️ 拒绝子序列匹配: 长度差异大且为短数字类型 (sim={subseq_sim})")
-                                subseq_sim = 0.0
-                            else:
-                                print(f"         ✅ 接受长ID子序列匹配: 尽管长度差异大,但特征显著 (len={len_cell})")
-
-                if subseq_sim > 90:
-                    print(f"         🔗 子序列匹配生效: '{cell_text[:10]}...' (sim={subseq_sim:.1f})")
-
-            # 综合得分:取五者最大值
-            similarity = max(token_sort_sim, partial_sim, token_set_sim, reconstruct_sim, subseq_sim)
-
-            # 🎯 子串匹配加分
-            if is_substring:
-                similarity = min(100, similarity + 10)
-            
-            # 🎯 长度惩罚:如果 box 内容比 cell 多太多(例如吞了下一个单元格),扣分
-            # 注意:token_set_ratio 对长度不敏感,所以这里必须严格检查长度,防止误判
-            # 只有当 similarity 很高时才检查,防止误杀
-            if similarity > 80:
-                len_cell = len(cell_text_normalized)
-                len_box = len(merged_text_normalized)
-                
-                # 如果是 token_set_sim 贡献的高分,说明 OCR 里包含了很多噪音
-                # 我们需要确保这些噪音不是“下一个单元格的内容”
-                # 这里可以加一个更严格的长度检查,或者检查是否包含换行符等
-                if len_box > len_cell * 2.0 + 10: # 放宽一点,因为 token_set 本来就是处理噪音的
-                     similarity -= 10 # 稍微扣一点分,表示虽然全找到了,但噪音太多不太完美
-            
-            if similarity >= self.text_matcher.similarity_threshold:
-                print(f"         ✓ 匹配成功: '{cell_text[:15]}' vs '{box['text'][:15]}' (相似度: {similarity})")
-                # 由于是模糊匹配,返回第一个未使用的 box 作为 last_index
-                for b in boxes:
-                    if not b.get('used'):
-                        last_idx = max(boxes.index(b)-1, 0)
-                        break
-                return self._build_match_result(box['sorted_combo'], box['text'], similarity, max(start_idx, last_idx))
-        
-        print(f"         ✗ 匹配失败: '{cell_text[:15]}'")
-        return None
-
-    def _build_match_result(self, boxes: List[Dict], text: str, 
-                        score: float, last_index: int) -> Dict:
-        """构建匹配结果(使用原始坐标)"""
-    
-        # 🔑 关键修复:使用 original_bbox(如果存在)
-        def get_original_bbox(box: Dict) -> List[int]:
-            return box.get('original_bbox', box['bbox'])
-        
-        original_bboxes = [get_original_bbox(b) for b in boxes]
-        
-        merged_bbox = [
-            min(b[0] for b in original_bboxes),
-            min(b[1] for b in original_bboxes),
-            max(b[2] for b in original_bboxes),
-            max(b[3] for b in original_bboxes)
-        ]
-        
-        return {
-            'bbox': merged_bbox,  # ✅ 使用原始坐标
-            'text': text,
-            'score': score,
-            'paddle_indices': [b['paddle_bbox_index'] for b in boxes],
-            'used_boxes': boxes,
-            'last_used_index': last_index
-        }