""" 合并 MinerU 和 PaddleOCR 的结果 使用 MinerU 的表格结构识别 + PaddleOCR 的文字框坐标 """ import json import re from pathlib import Path from typing import List, Dict, Tuple, Optional from bs4 import BeautifulSoup from fuzzywuzzy import fuzz class MinerUPaddleOCRMerger: """合并 MinerU 和 PaddleOCR 的结果""" def __init__(self, look_ahead_window: int = 10, similarity_threshold: int = 80): """ Args: look_ahead_window: 向前查找的窗口大小 similarity_threshold: 文本相似度阈值 """ self.look_ahead_window = look_ahead_window self.similarity_threshold = similarity_threshold def merge_table_with_bbox(self, mineru_json_path: str, paddle_json_path: str, output_path: Optional[str] = None) -> Dict: """ 合并 MinerU 和 PaddleOCR 的结果 Args: mineru_json_path: MinerU 输出的 JSON 路径 paddle_json_path: PaddleOCR 输出的 JSON 路径 output_path: 输出路径(可选) Returns: 合并后的结果字典 """ # 加载数据 with open(mineru_json_path, 'r', encoding='utf-8') as f: mineru_data = json.load(f) with open(paddle_json_path, 'r', encoding='utf-8') as f: paddle_data = json.load(f) # 提取 PaddleOCR 的文字框信息 paddle_text_boxes = self._extract_paddle_text_boxes(paddle_data) # 处理 MinerU 的数据 merged_data = self._process_mineru_data(mineru_data, paddle_text_boxes) # 保存结果 if output_path: output_path = Path(output_path).resolve() output_path.parent.mkdir(parents=True, exist_ok=True) with open(str(output_path), 'w', encoding='utf-8') as f: json.dump(merged_data, f, ensure_ascii=False, indent=2) return merged_data def _extract_paddle_text_boxes(self, paddle_data: Dict) -> List[Dict]: """提取 PaddleOCR 的文字框信息""" text_boxes = [] if 'overall_ocr_res' in paddle_data: ocr_res = paddle_data['overall_ocr_res'] rec_texts = ocr_res.get('rec_texts', []) rec_polys = ocr_res.get('rec_polys', []) rec_scores = ocr_res.get('rec_scores', []) for i, (text, poly, score) in enumerate(zip(rec_texts, rec_polys, rec_scores)): if text and text.strip(): # 计算 bbox (x_min, y_min, x_max, y_max) xs = [p[0] for p in poly] ys = [p[1] for p in poly] bbox = [min(xs), min(ys), max(xs), max(ys)] text_boxes.append({ 'text': text, 'bbox': bbox, 'poly': poly, 'score': score, 'paddle_bbox_index': i, 'used': False # 标记是否已被使用 }) return text_boxes def _process_mineru_data(self, mineru_data: List[Dict], paddle_text_boxes: List[Dict]) -> List[Dict]: """处理 MinerU 数据,添加 bbox 信息""" merged_data = [] paddle_pointer = 0 # PaddleOCR 文字框指针 for item in mineru_data: if item['type'] == 'table': # 处理表格 merged_item = item.copy() table_html = item.get('table_body', '') # 解析 HTML 表格并添加 bbox enhanced_html, paddle_pointer = self._enhance_table_html_with_bbox( table_html, paddle_text_boxes, paddle_pointer ) merged_item['table_body'] = enhanced_html merged_item['table_body_with_bbox'] = enhanced_html merged_item['bbox_mapping'] = 'merged_from_paddle_ocr' merged_data.append(merged_item) elif item['type'] in ['text', 'header']: # 处理普通文本 merged_item = item.copy() text = item.get('text', '') # 查找匹配的 bbox matched_bbox, paddle_pointer = self._find_matching_bbox( text, paddle_text_boxes, paddle_pointer ) if matched_bbox: merged_item['bbox'] = matched_bbox['bbox'] merged_item['bbox_source'] = 'paddle_ocr' merged_item['text_score'] = matched_bbox['score'] # 标记为已使用 matched_bbox['used'] = True merged_data.append(merged_item) else: # 其他类型直接复制 merged_data.append(item.copy()) return merged_data def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict], start_pointer: int) -> Tuple[str, int]: """ 为 HTML 表格添加 bbox 信息 Args: html: 原始 HTML 表格 paddle_text_boxes: PaddleOCR 文字框列表 start_pointer: 起始指针位置 Returns: (增强后的 HTML, 新的指针位置) """ soup = BeautifulSoup(html, 'html.parser') current_pointer = start_pointer # 遍历所有单元格 for cell in soup.find_all(['td', 'th']): cell_text = cell.get_text(strip=True) if not cell_text: continue # 查找匹配的 bbox matched_bbox, current_pointer = self._find_matching_bbox( cell_text, paddle_text_boxes, current_pointer ) if matched_bbox: # 添加 data-bbox 属性 bbox = matched_bbox['bbox'] cell['data-bbox'] = f"[{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]}]" cell['data-score'] = f"{matched_bbox['score']:.4f}" cell['data-paddle-index'] = str(matched_bbox['paddle_bbox_index']) # 标记为已使用 matched_bbox['used'] = True return str(soup), current_pointer def _find_matching_bbox(self, target_text: str, text_boxes: List[Dict], start_index: int) -> tuple[Optional[Dict], int]: """ 查找匹配的文字框 Args: target_text: 目标文本 text_boxes: 文字框列表 start_index: 起始索引 Returns: 匹配的文字框信息,如果未找到返回 None """ target_text = self._normalize_text(target_text) # 在窗口范围内查找 search_end = min(start_index + self.look_ahead_window, len(text_boxes)) best_match = None best_index = start_index best_similarity = 0 for i in range(start_index, search_end): if text_boxes[i]['used']: continue box_text = self._normalize_text(text_boxes[i]['text']) # 计算相似度 # similarity = fuzz.ratio(target_text, box_text) similarity = fuzz.token_set_ratio(target_text, box_text) # 精确匹配优先 if target_text == box_text: return text_boxes[i], i + 1 # 记录最佳匹配 if similarity > best_similarity and similarity >= self.similarity_threshold: best_similarity = similarity best_match = text_boxes[i] best_index = i + 1 return best_match, best_index def _normalize_text(self, text: str) -> str: """标准化文本(去除空格、标点等)""" # 移除所有空白字符 text = re.sub(r'\s+', '', text) # 转换全角数字和字母为半角 text = self._full_to_half(text) return text.lower() def _full_to_half(self, text: str) -> str: """全角转半角""" result = [] for char in text: code = ord(char) if code == 0x3000: # 全角空格 code = 0x0020 elif 0xFF01 <= code <= 0xFF5E: # 全角字符 code -= 0xFEE0 result.append(chr(code)) return ''.join(result) def generate_enhanced_markdown(self, merged_data: List[Dict], output_path: Optional[str] = None) -> str: """ 生成增强的 Markdown(包含 bbox 信息的注释) Args: merged_data: 合并后的数据 output_path: 输出路径(可选) Returns: Markdown 内容 """ md_lines = [] for item in merged_data: if item['type'] == 'header': text = item.get('text', '') bbox = item.get('bbox', []) md_lines.append(f"") md_lines.append(f"# {text}\n") elif item['type'] == 'text': text = item.get('text', '') bbox = item.get('bbox', []) if bbox: md_lines.append(f"") md_lines.append(f"{text}\n") elif item['type'] == 'table': md_lines.append("\n## 表格\n") md_lines.append("\n") md_lines.append(item.get('table_body_with_bbox', item.get('table_body', ''))) md_lines.append("\n") markdown_content = '\n'.join(md_lines) if output_path: with open(output_path, 'w', encoding='utf-8') as f: f.write(markdown_content) return markdown_content def extract_table_cells_with_bbox(self, merged_data: List[Dict]) -> List[Dict]: """ 提取所有表格单元格及其 bbox 信息 Returns: 单元格列表,每个包含 text, bbox, row, col 等信息 """ cells = [] for item in merged_data: if item['type'] != 'table': continue html = item.get('table_body_with_bbox', item.get('table_body', '')) soup = BeautifulSoup(html, 'html.parser') # 遍历所有行 for row_idx, row in enumerate(soup.find_all('tr')): # 遍历所有单元格 for col_idx, cell in enumerate(row.find_all(['td', 'th'])): cell_text = cell.get_text(strip=True) bbox_str = cell.get('data-bbox', '') if bbox_str: try: bbox = json.loads(bbox_str) cells.append({ 'text': cell_text, 'bbox': bbox, 'row': row_idx, 'col': col_idx, 'score': float(cell.get('data-score', 0)), 'paddle_index': int(cell.get('data-paddle-index', -1)) }) except (json.JSONDecodeError, ValueError): pass return cells def merge_mineru_paddle_batch(mineru_dir: str, paddle_dir: str, output_dir: str): """ 批量合并 MinerU 和 PaddleOCR 的结果 Args: mineru_dir: MinerU 结果目录 paddle_dir: PaddleOCR 结果目录 output_dir: 输出目录 """ mineru_path = Path(mineru_dir) paddle_path = Path(paddle_dir) output_path = Path(output_dir) output_path.mkdir(parents=True, exist_ok=True) merger = MinerUPaddleOCRMerger(look_ahead_window=10, similarity_threshold=80) # 查找所有 MinerU 的 JSON 文件, page_001.json mineru_files = list(mineru_path.glob('*_page_*[0-9].json')) mineru_files.sort() print(f"找到 {len(mineru_files)} 个 MinerU 文件") for mineru_file in mineru_files: # 查找对应的 PaddleOCR 文件 paddle_file = paddle_path / mineru_file.name if not paddle_file.exists(): print(f"⚠️ 未找到对应的 PaddleOCR 文件: {paddle_file}") continue print(f"处理: {mineru_file.name}") # 输出文件路径 merged_json_path = output_path / f"{mineru_file.stem}_merged.json" merged_md_path = output_path / f"{mineru_file.stem}_merged.md" cells_json_path = output_path / f"{mineru_file.stem}_cells.json" try: # 合并数据 merged_data = merger.merge_table_with_bbox( str(mineru_file), str(paddle_file), str(merged_json_path) ) # 生成 Markdown merger.generate_enhanced_markdown(merged_data, str(merged_md_path)) # 提取单元格信息 cells = merger.extract_table_cells_with_bbox(merged_data) with open(cells_json_path, 'w', encoding='utf-8') as f: json.dump(cells, f, ensure_ascii=False, indent=2) print(f" ✅ 合并完成") print(f" - 提取了 {len(cells)} 个表格单元格") except Exception as e: print(f" ❌ 处理失败: {e}") import traceback traceback.print_exc() if __name__ == "__main__": # 示例用法 mineru_dir = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/mineru-vlm-2.5.3_Results" paddle_dir = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/data_PPStructureV3_Results" output_dir = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/merged_results" merge_mineru_paddle_batch(mineru_dir, paddle_dir, output_dir) # 示例:合并1个文件 # mineru_json = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/mineru-vlm-2.5.3_Results/A用户_单元格扫描流水_page_001.json" # paddle_json = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/data_PPStructureV3_Results/A用户_单元格扫描流水_page_001.json" # output_json = "/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/merged_results/A用户_单元格扫描流水_page_001.json" # merger = MinerUPaddleOCRMerger(look_ahead_window=10, similarity_threshold=80) # merger.merge_table_with_bbox(mineru_json, paddle_json, output_json)