#!/usr/bin/env python3 """ OCR验证工具的布局管理模块 包含标准布局、滚动布局、紧凑布局的实现 """ import streamlit as st from pathlib import Path from PIL import Image from typing import Dict, List, Optional import plotly.graph_objects as go from typing import Tuple from ocr_validator_utils import ( convert_html_table_to_markdown, parse_html_tables, draw_bbox_on_image, rotate_image_and_coordinates, get_ocr_tool_rotation_config, detect_image_orientation_by_opencv # 新增导入 ) class OCRLayoutManager: """OCR布局管理器""" def __init__(self, validator): self.validator = validator self.config = validator.config self._rotated_image_cache = {} self._cache_max_size = 10 self._orientation_cache = {} # 缓存方向检测结果 # self._auto_detected_angle = 0.0 # 自动检测的旋转角度缓存 def clear_image_cache(self): """清理所有图像缓存""" self._rotated_image_cache.clear() def clear_cache_for_image(self, image_path: str): """清理指定图像的所有缓存""" keys_to_remove = [key for key in self._rotated_image_cache.keys() if key.startswith(image_path)] for key in keys_to_remove: del self._rotated_image_cache[key] def get_cache_info(self) -> dict: """获取缓存信息""" return { 'cache_size': len(self._rotated_image_cache), 'cached_images': list(self._rotated_image_cache.keys()), 'max_size': self._cache_max_size } def _manage_cache_size(self): """管理缓存大小,超出限制时清理最旧的缓存""" if len(self._rotated_image_cache) > self._cache_max_size: # 删除最旧的缓存项(FIFO策略) oldest_key = next(iter(self._rotated_image_cache)) del self._rotated_image_cache[oldest_key] def detect_and_suggest_rotation(self, image_path: str) -> Dict: """检测并建议图片旋转角度""" if image_path in self._orientation_cache: return self._orientation_cache[image_path] # 使用自动检测功能 detection_result = detect_image_orientation_by_opencv(image_path) # 缓存结果 self._orientation_cache[image_path] = detection_result return detection_result def get_rotation_angle(self) -> float: """获取旋转角度 - 增强版本支持自动检测""" # 首先尝试从OCR数据中获取(PPStructV3等) if self.validator.ocr_data: for item in self.validator.ocr_data: if isinstance(item, dict) and 'rotation_angle' in item: return item['rotation_angle'] # 如果没有预设角度,尝试自动检测 if hasattr(self, '_auto_detected_angle'): return self._auto_detected_angle return 0.0 def load_and_rotate_image(self, image_path: str) -> Optional[Image.Image]: """加载并根据需要旋转图像""" if not image_path or not Path(image_path).exists(): return None # 检查缓存 rotation_angle = self.get_rotation_angle() cache_key = f"{image_path}_{rotation_angle}" if cache_key in self._rotated_image_cache: return self._rotated_image_cache[cache_key] try: image = Image.open(image_path) # 如果需要旋转 if rotation_angle != 0: # 获取OCR工具的旋转配置 rotation_config = get_ocr_tool_rotation_config(self.validator.ocr_data, self.config) # st.info(f"🔄 检测到文档旋转角度: {rotation_angle}°,正在处理图像和坐标...") # st.info(f"📋 OCR工具配置: 坐标{'已预旋转' if rotation_config['coordinates_are_pre_rotated'] else '需要旋转'}") # 判断是否需要旋转坐标 if rotation_config['coordinates_are_pre_rotated']: # PPStructV3: 坐标已经是旋转后的,只旋转图像 if rotation_angle == 270: rotated_image = image.rotate(-90, expand=True) # 顺时针90度 elif rotation_angle == 90: rotated_image = image.rotate(90, expand=True) # 逆时针90度 elif rotation_angle == 180: rotated_image = image.rotate(180, expand=True) # 180度 else: rotated_image = image.rotate(-rotation_angle, expand=True) # 坐标不需要变换,因为JSON中已经是正确的坐标 self._rotated_image_cache[cache_key] = rotated_image self._manage_cache_size() return rotated_image else: # Dots OCR: 需要同时旋转图像和坐标 # 收集所有bbox坐标 all_bboxes = [] text_to_bbox_map = {} # 记录文本到bbox索引的映射 bbox_index = 0 for text, info_list in self.validator.text_bbox_mapping.items(): text_to_bbox_map[text] = [] for info in info_list: all_bboxes.append(info['bbox']) text_to_bbox_map[text].append(bbox_index) bbox_index += 1 # 旋转图像和坐标 rotated_image, rotated_bboxes = rotate_image_and_coordinates( image, rotation_angle, all_bboxes, rotate_coordinates=not rotation_config['coordinates_are_pre_rotated'] ) # 更新bbox映射 - 使用映射关系确保正确对应 for text, bbox_indices in text_to_bbox_map.items(): for i, bbox_idx in enumerate(bbox_indices): if bbox_idx < len(rotated_bboxes) and i < len(self.validator.text_bbox_mapping[text]): self.validator.text_bbox_mapping[text][i]['bbox'] = rotated_bboxes[bbox_idx] # 缓存结果 self._rotated_image_cache[cache_key] = rotated_image self._manage_cache_size() return rotated_image else: # 无需旋转,直接缓存原图 self._rotated_image_cache[cache_key] = image self._manage_cache_size() # 检查并管理缓存大小 return image except Exception as e: st.error(f"❌ 图像加载失败: {e}") return None def render_content_section(self, layout_type: str = "compact"): """渲染内容区域 - 统一方法""" st.header("📄 OCR识别内容") # 显示旋转信息 # rotation_angle = self.get_rotation_angle() # if rotation_angle != 0: # st.info(f"📐 文档旋转角度: {rotation_angle}°") # 文本选择器 if self.validator.text_bbox_mapping: text_options = ["请选择文本..."] + list(self.validator.text_bbox_mapping.keys()) selected_index = st.selectbox( "选择要校验的文本", range(len(text_options)), format_func=lambda x: text_options[x][:50] + "..." if len(text_options[x]) > 50 else text_options[x], key=f"{layout_type}_text_selector" ) if selected_index > 0: st.session_state.selected_text = text_options[selected_index] else: st.warning("没有找到可点击的文本") def render_md_content(self, layout_type: str): """渲染Markdown内容 - 统一方法""" if not self.validator.md_content: return None, None # 搜索功能 search_term = st.text_input( "🔍 搜索文本内容", placeholder="输入关键词搜索...", key=f"{layout_type}_search" ) display_content = self.validator.md_content if search_term: lines = display_content.split('\n') filtered_lines = [line for line in lines if search_term.lower() in line.lower()] display_content = '\n'.join(filtered_lines) if filtered_lines: st.success(f"找到 {len(filtered_lines)} 行包含 '{search_term}'") else: st.warning(f"未找到包含 '{search_term}' 的内容") return display_content def render_content_by_mode(self, content: str, render_mode: str, font_size: int, container_height: int, layout_type: str): """根据渲染模式显示内容 - 增强版本""" if content is None or render_mode is None: return if render_mode == "HTML渲染": # 增强的HTML渲染样式,支持横向滚动 content_style = f""" """ st.markdown(content_style, unsafe_allow_html=True) st.markdown(f'
{content}
', unsafe_allow_html=True) elif render_mode == "Markdown渲染": converted_content = convert_html_table_to_markdown(content) st.markdown(converted_content, unsafe_allow_html=True) elif render_mode == "DataFrame表格": if ' 30 else text_options[x], key="compact_quick_text_selector" # 使用不同的key ) if selected_index > 0: st.session_state.selected_text = text_options[selected_index] # 处理并显示OCR内容 if self.validator.md_content: # 高亮可点击文本 highlighted_content = self.validator.md_content for text in self.validator.text_bbox_mapping.keys(): if len(text) > 2: # 避免高亮过短的文本 css_class = "highlight-text selected-highlight" if text == st.session_state.selected_text else "highlight-text" highlighted_content = highlighted_content.replace( text, f'{text}' ) self.render_content_by_mode(highlighted_content, "HTML渲染", font_size, container_height, layout_type) with right_col: # 修复的对齐图片显示 self.create_aligned_image_display(zoom_level, "compact") def create_aligned_image_display(self, zoom_level: float = 1.0, layout_type: str = "aligned"): """创建与左侧对齐的图片显示 - 修复显示问题""" st.header("🖼️ 原图标注") # 图片控制选项 col1, col2, col3, col4 = st.columns(4) with col1: # 判断{layout_type}_zoom_level是否有值,如果有值直接使用,否则使用传入的zoom_level current_zoom = self.validator.zoom_level current_zoom = st.slider("图片缩放", 0.3, 2.0, current_zoom, 0.1, key=f"{layout_type}_zoom_level") if current_zoom != self.validator.zoom_level: self.validator.zoom_level = current_zoom with col2: # 判断{layout_type}_show_all_boxes是否有值,如果有值直接使用,否则默认False # if f"{layout_type}_show_all_boxes" not in st.session_state: # st.session_state[f"{layout_type}_show_all_boxes"] = False show_all_boxes = st.checkbox( "显示所有框", # value=st.session_state[f"{layout_type}_show_all_boxes"], value = self.validator.show_all_boxes, key=f"{layout_type}_show_all_boxes" ) if show_all_boxes != self.validator.show_all_boxes: self.validator.show_all_boxes = show_all_boxes with col3: # 判断{layout_type}_fit_to_container是否有值,如果有值直接使用,否则默认True fit_to_container = st.checkbox( "适应容器", value=self.validator.fit_to_container, key=f"{layout_type}_fit_to_container" ) if fit_to_container != self.validator.fit_to_container: self.validator.fit_to_container = fit_to_container with col4: # 显示当前角度状态 current_angle = self.get_rotation_angle() st.metric("当前角度", f"{current_angle}°") # 方向检测控制面板 with st.expander("🔄 图片方向检测", expanded=False): col1, col2, col3 = st.columns([1, 1, 1], width='stretch') with col1: manual_angle = st.selectbox( "设置角度", [0, 90, 180, 270], index = 0, label_visibility="collapsed", # key=f"{layout_type}_manual_angle" ) # if st.button("应用手动角度", key=f"{layout_type}_apply_manual"): if not hasattr(self, '_auto_detected_angle') or self._auto_detected_angle != manual_angle: self._auto_detected_angle = float(manual_angle) # st.success(f"已设置旋转角度为 {manual_angle}") # 需要清除图片缓存,以及text_bbox_mapping中的bbox self.clear_image_cache() self.validator.process_data() st.rerun() with col2: if st.button("🔍 自动检测方向", key=f"{layout_type}_detect_orientation"): if self.validator.image_path: with st.spinner("正在检测图片方向..."): detection_result = self.detect_and_suggest_rotation(self.validator.image_path) st.session_state[f'{layout_type}_detection_result'] = detection_result st.rerun() with col3: if st.button("🔄 重置角度", key=f"{layout_type}_reset_angle"): if hasattr(self, '_auto_detected_angle'): delattr(self, '_auto_detected_angle') st.success("已重置旋转角度") # 需要清除图片缓存,以及text_bbox_mapping中的bbox self.clear_image_cache() self.validator.process_data() st.rerun() # 显示检测结果 if f'{layout_type}_detection_result' in st.session_state: result = st.session_state[f'{layout_type}_detection_result'] st.markdown("### 🎯 检测结果") # 结果概览 result_col1, result_col2, result_col3 = st.columns(3) with result_col1: st.metric("建议角度", f"{result['detected_angle']}°") with result_col2: st.metric("置信度", f"{result['confidence']:.2%}") with result_col3: confidence_color = "🟢" if result['confidence'] > 0.7 else "🟡" if result['confidence'] > 0.4 else "🔴" st.metric("可信度", f"{confidence_color}") # 详细信息 st.write(f"**检测信息:** {result['message']}") if 'method_details' in result: st.write("**方法详情:**") for detail in result['method_details']: st.write(f"• {detail}") # 应用建议角度 if result['confidence'] > 0.3 and result['detected_angle'] != 0: if st.button(f"✅ 应用建议角度 {result['detected_angle']}°", key=f"{layout_type}_apply_suggested"): self._auto_detected_angle = result['detected_angle'] st.success(f"已应用建议角度 {result['detected_angle']}°") # 需要清除图片缓存,以及text_bbox_mapping中的bbox self.clear_image_cache() self.validator.process_data() st.rerun() # 显示个别方法的结果 if 'individual_results' in result and len(result['individual_results']) > 1: with st.expander("📊 各方法检测详情", expanded=False): for i, individual in enumerate(result['individual_results']): st.write(f"**方法 {i+1}: {individual['method']}**") st.write(f"角度: {individual['detected_angle']}°, 置信度: {individual['confidence']:.2f}") st.write(f"信息: {individual['message']}") if 'error' in individual: st.error(f"错误: {individual['error']}") st.write("---") # 使用增强的图像加载方法 image = self.load_and_rotate_image(self.validator.image_path) if image: try: # 根据缩放级别调整图片大小 new_width = int(image.width * current_zoom) new_height = int(image.height * current_zoom) resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) # 计算选中的bbox selected_bbox = None if st.session_state.selected_text and st.session_state.selected_text in self.validator.text_bbox_mapping: info = self.validator.text_bbox_mapping[st.session_state.selected_text][0] bbox = info['bbox'] selected_bbox = [int(coord * current_zoom) for coord in bbox] # 收集所有框 all_boxes = [] if show_all_boxes: for text, info_list in self.validator.text_bbox_mapping.items(): for info in info_list: bbox = info['bbox'] if len(bbox) >= 4: scaled_bbox = [coord * current_zoom for coord in bbox] all_boxes.append(scaled_bbox) # 创建交互式图片 fig = self.create_resized_interactive_plot(resized_image, selected_bbox, current_zoom, all_boxes) plot_config = { 'displayModeBar': True, 'modeBarButtonsToRemove': ['zoom2d', 'select2d', 'lasso2d', 'autoScale2d'], 'scrollZoom': True, 'doubleClick': 'reset' } st.plotly_chart( fig, use_container_width=fit_to_container, config=plot_config, key=f"{layout_type}_plot" ) # 显示选中文本的详细信息 if st.session_state.selected_text and st.session_state.selected_text in self.validator.text_bbox_mapping: st.subheader("📍 选中文本详情") info = self.validator.text_bbox_mapping[st.session_state.selected_text][0] bbox = info['bbox'] info_col1, info_col2 = st.columns(2) with info_col1: st.write(f"**文本内容:** {st.session_state.selected_text[:30]}...") st.write(f"**类别:** {info['category']}") # 显示旋转信息 rotation_angle = self.get_rotation_angle() if rotation_angle != 0: st.write(f"**旋转角度:** {rotation_angle}°") with info_col2: st.write(f"**位置:** [{', '.join(map(str, bbox))}]") if len(bbox) >= 4: st.write(f"**大小:** {bbox[2] - bbox[0]} x {bbox[3] - bbox[1]} px") # 错误标记功能 col1, col2 = st.columns(2) with col1: if st.button("❌ 标记为错误", key=f"{layout_type}_mark_error"): st.session_state.marked_errors.add(st.session_state.selected_text) st.rerun() with col2: if st.button("✅ 取消错误标记", key=f"{layout_type}_unmark_error"): st.session_state.marked_errors.discard(st.session_state.selected_text) st.rerun() # 增强的调试信息 with st.expander("🔍 图像和坐标调试信息", expanded=False): rotation_angle = self.get_rotation_angle() rotation_config = get_ocr_tool_rotation_config(self.validator.ocr_data, self.config) col_debug1, col_debug2, col_debug3 = st.columns(3) with col_debug1: st.write("**图像信息:**") st.write(f"原始尺寸: {image.width} x {image.height}") st.write(f"缩放后尺寸: {resized_image.width} x {resized_image.height}") st.write(f"当前角度: {rotation_angle}°") with col_debug2: st.write("**坐标信息:**") if selected_bbox: st.write(f"选中框: {selected_bbox}") st.write(f"总框数: {len(all_boxes)}") st.write(f"文本框数: {len(self.validator.text_bbox_mapping)}") with col_debug3: st.write("**配置信息:**") st.write(f"工具类型: {rotation_config.get('coordinates_are_pre_rotated', 'unknown')}") st.write(f"缓存状态: {len(self._rotated_image_cache)} 项") if hasattr(self, '_auto_detected_angle'): st.write(f"自动检测角度: {self._auto_detected_angle}°") except Exception as e: st.error(f"❌ 图片处理失败: {e}") st.exception(e) else: st.error("未找到对应的图片文件") if self.validator.image_path: st.write(f"期望路径: {self.validator.image_path}") st.markdown('', unsafe_allow_html=True) def create_resized_interactive_plot(self, image: Image.Image, selected_bbox: Optional[List[int]], zoom_level: float, all_boxes: list[tuple]) -> go.Figure: """ 创建可调整大小的交互式图片 - 修复图像显示和bbox对齐问题 图片,box坐标全部是已缩放,旋转后的坐标 """ fig = go.Figure() # 添加图片 - Plotly坐标系,原点在左下角 fig.add_layout_image( dict( source=image, xref="x", yref="y", x=0, y=image.height, # 图片左下角在Plotly坐标系中的位置 sizex=image.width, sizey=image.height, sizing="stretch", opacity=1.0, layer="below" ) ) # 显示所有bbox - 需要坐标转换 if len(all_boxes) > 0: for bbox in all_boxes: if len(bbox) >= 4: x1, y1, x2, y2 = bbox[:4] # 转换为Plotly坐标系(翻转Y轴) plot_x1 = x1 plot_x2 = x2 plot_y1 = image.height - y2 # JSON的y2 -> Plotly的底部 plot_y2 = image.height - y1 # JSON的y1 -> Plotly的顶部 color = "rgba(0, 100, 200, 0.2)" fig.add_shape( type="rect", x0=plot_x1, y0=plot_y1, x1=plot_x2, y1=plot_y2, line=dict(color="blue", width=1), fillcolor=color, ) # 高亮显示选中的bbox if selected_bbox and len(selected_bbox) >= 4: x1, y1, x2, y2 = selected_bbox[:4] # 转换为Plotly坐标系 plot_x1 = x1 plot_x2 = x2 plot_y1 = image.height - y2 # 翻转Y坐坐标 plot_y2 = image.height - y1 # 翻转Y坐标 fig.add_shape( type="rect", x0=plot_x1, y0=plot_y1, x1=plot_x2, y1=plot_y2, line=dict(color="red", width=3), fillcolor="rgba(255, 0, 0, 0.3)", ) # 修复:优化显示尺寸计算 max_display_width = 800 max_display_height = 600 # 计算合适的显示尺寸,保持宽高比 aspect_ratio = image.width / image.height if aspect_ratio > 1: # 宽图 display_width = min(max_display_width, image.width) display_height = int(display_width / aspect_ratio) else: # 高图 display_height = min(max_display_height, image.height) display_width = int(display_height * aspect_ratio) # 修复:设置合理的布局参数 fig.update_layout( width=display_width, height=display_height, margin=dict(l=0, r=0, t=0, b=0), # 移除所有边距 showlegend=False, plot_bgcolor='white', dragmode="pan", # 修复:X轴设置 xaxis=dict( visible=False, range=[0, image.width], constrain="domain", fixedrange=False, autorange=False, showgrid=False, zeroline=False ), # 修复:Y轴设置,确保范围正确 yaxis=dict( visible=False, range=[0, image.height], # 确保Y轴范围从0到图片高度 constrain="domain", scaleanchor="x", scaleratio=1, fixedrange=False, autorange=False, showgrid=False, zeroline=False ) ) return fig