import sys
import time
import re
import difflib
import json
import argparse
from typing import Dict, List, Tuple
import markdown
from bs4 import BeautifulSoup
from fuzzywuzzy import fuzz
class OCRResultComparator:
def __init__(self):
self.differences = []
self.paragraph_match_threshold = 80 # 段落相似度阈值, 大于80代表段落匹配,<100,表示存在差异,小于80代表段落不匹配
self.content_similarity_threshold = 95 # 段落匹配,比较内容,大于95认为无差异
self.max_paragraph_window = 6
self.table_comparison_mode = 'standard' # 新增:表格比较模式
self.header_similarity_threshold = 90 # 表头相似度阈值
def normalize_text(self, text: str) -> str:
"""标准化文本:去除多余空格、回车等无效字符"""
if not text:
return ""
# 去除多余的空白字符
text = re.sub(r'\s+', ' ', text.strip())
# 去除标点符号周围的空格
text = re.sub(r'\s*([,。:;!?、])\s*', r'\1', text)
return text
def is_image_reference(self, text: str) -> bool:
"""判断是否为图片引用或描述"""
image_keywords = [
'图', '图片', '图像', 'image', 'figure', 'fig',
'照片', '截图', '示意图', '流程图', '结构图'
]
# 检查是否包含图片相关关键词
for keyword in image_keywords:
if keyword in text.lower():
return True
# 检查是否为Markdown图片语法
if re.search(r'!\[.*?\]\(.*?\)', text):
return True
# 检查是否为HTML图片标签
if re.search(r'
]*>', text, re.IGNORECASE):
return True
return False
def extract_table_data(self, md_content: str) -> List[List[List[str]]]:
"""从Markdown中提取表格数据"""
tables = []
# 使用BeautifulSoup解析HTML表格
soup = BeautifulSoup(md_content, 'html.parser')
html_tables = soup.find_all('table')
for table in html_tables:
table_data = []
rows = table.find_all('tr')
for row in rows:
cells = row.find_all(['td', 'th'])
row_data = []
for cell in cells:
cell_text = self.normalize_text(cell.get_text())
# 跳过图片内容
if not self.is_image_reference(cell_text):
row_data.append(cell_text)
else:
row_data.append("[图片内容-忽略]")
if row_data: # 只添加非空行
table_data.append(row_data)
if table_data:
tables.append(table_data)
return tables
def merge_split_paragraphs(self, lines: List[str]) -> List[str]:
# 合并连续的非空行作为一个段落,且过滤图片内容
merged_lines = []
current_paragraph = ""
for i, line in enumerate(lines):
# 跳过空行
if not line:
if current_paragraph:
merged_lines.append(current_paragraph)
current_paragraph = ""
continue
# 跳过图片内容
if self.is_image_reference(line):
continue
# 检查是否是标题(以数字、中文数字或特殊标记开头)
is_title = (
line.startswith(('一、', '二、', '三、', '四、', '五、', '六、', '七、', '八、', '九、', '十、')) or
line.startswith(('1.', '2.', '3.', '4.', '5.', '6.', '7.', '8.', '9.')) or
line.startswith('#')
)
# 如果是标题,结束当前段落
if is_title:
if current_paragraph:
merged_lines.append(current_paragraph)
current_paragraph = ""
merged_lines.append(line)
else:
# 检查是否应该与前一行合并 # 如果当前段落不为空,且当前段落最后一个字符非空白字符
if current_paragraph and not current_paragraph.endswith((' ', '\t')):
current_paragraph += line
else:
current_paragraph = line
# 处理最后一个段落
if current_paragraph:
merged_lines.append(current_paragraph)
return merged_lines
def extract_paragraphs(self, md_content: str) -> List[str]:
"""提取段落文本"""
# 移除表格 - 修复正则表达式
# 使用 IGNORECASE 和 DOTALL 标志
content = re.sub(r'
', '', md_content, flags=re.DOTALL | re.IGNORECASE)
# 移除其他 HTML 标签
content = re.sub(r'<[^>]+>', '', content)
# 移除 Markdown 注释
content = re.sub(r'', '', content, flags=re.DOTALL)
# 分割段落
paragraphs = []
lines = content.split('\n')
merged_lines = self.merge_split_paragraphs(lines)
for line in merged_lines:
normalized = self.normalize_text(line)
if normalized:
paragraphs.append(normalized)
else:
print(f"跳过的内容无效或图片段落: {line[0:30] if line else ''}...")
return paragraphs
def compare_tables(self, table1: List[List[str]], table2: List[List[str]]) -> List[Dict]:
"""比较表格数据"""
differences = []
# 确定最大行数
max_rows = max(len(table1), len(table2))
for i in range(max_rows):
row1 = table1[i] if i < len(table1) else []
row2 = table2[i] if i < len(table2) else []
# 确定最大列数
max_cols = max(len(row1), len(row2))
for j in range(max_cols):
cell1 = row1[j] if j < len(row1) else ""
cell2 = row2[j] if j < len(row2) else ""
# 跳过图片内容比较
if "[图片内容-忽略]" in cell1 or "[图片内容-忽略]" in cell2:
continue
if cell1 != cell2:
# 特别处理数字金额
if self.is_numeric(cell1) and self.is_numeric(cell2):
num1 = self.parse_number(cell1)
num2 = self.parse_number(cell2)
if abs(num1 - num2) > 0.001: # 允许小数精度误差
differences.append({
'type': 'table_amount',
'position': f'行{i+1}列{j+1}',
'file1_value': cell1,
'file2_value': cell2,
'description': f'金额不一致: {cell1} vs {cell2}',
'row_index': i,
'col_index': j
})
else:
differences.append({
'type': 'table_text',
'position': f'行{i+1}列{j+1}',
'file1_value': cell1,
'file2_value': cell2,
'description': f'文本不一致: {cell1} vs {cell2}',
'row_index': i,
'col_index': j
})
return differences
def parse_number(self, text: str) -> float:
"""解析数字,处理千分位和货币符号"""
if not text:
return 0.0
# 移除货币符号和千分位分隔符
clean_text = re.sub(r'[¥$€£,,\s]', '', text)
# 处理负号
is_negative = False
if clean_text.startswith('-') or clean_text.startswith('−'):
is_negative = True
clean_text = clean_text[1:]
# 处理括号表示的负数 (123.45) -> -123.45
if clean_text.startswith('(') and clean_text.endswith(')'):
is_negative = True
clean_text = clean_text[1:-1]
try:
number = float(clean_text)
return -number if is_negative else number
except ValueError:
return 0.0
def extract_datetime(self, text: str) -> str:
"""提取并标准化日期时间"""
# 尝试匹配各种日期时间格式
patterns = [
(r'(\d{4})[-/](\d{1,2})[-/](\d{1,2})\s*(\d{1,2}):(\d{1,2}):(\d{1,2})',
lambda m: f"{m.group(1)}-{m.group(2).zfill(2)}-{m.group(3).zfill(2)} {m.group(4).zfill(2)}:{m.group(5).zfill(2)}:{m.group(6).zfill(2)}"),
(r'(\d{4})[-/](\d{1,2})[-/](\d{1,2})',
lambda m: f"{m.group(1)}-{m.group(2).zfill(2)}-{m.group(3).zfill(2)}"),
(r'(\d{4})年(\d{1,2})月(\d{1,2})日',
lambda m: f"{m.group(1)}-{m.group(2).zfill(2)}-{m.group(3).zfill(2)}"),
]
for pattern, formatter in patterns:
match = re.search(pattern, text)
if match:
return formatter(match)
return text
def is_numeric(self, text: str) -> bool:
"""判断文本是否为数字 - 改进版:区分数值和长数字字符串"""
""">15位的数字字符串视为文本型数字"""
if not text:
return False
# 移除千分位分隔符、空格和负号
clean_text = re.sub(r'[,,\s-]', '', text)
# ✅ 新增:长数字字符串判断(超过15位,认为是文本型数字)
if len(clean_text) > 15:
return False
try:
float(clean_text)
return True
except ValueError:
return False
def is_text_number(self, text: str) -> bool:
"""
判断是否为文本型数字(如账号、订单号、流水号)
特征:
1. 长度超过15位的纯数字
2. 或者包含空格/连字符的数字序列
"""
if not text:
return False
# 移除空格和连字符
clean_text = re.sub(r'[\s-]', '', text)
# 检查是否为纯数字且长度超过15位
if clean_text.isdigit() and len(clean_text) > 15:
return True
# 检查是否为带空格/连字符的数字序列
if re.match(r'^[\d\s-]+$', text) and len(clean_text) > 10:
return True
return False
def detect_column_type(self, column_values: List[str]) -> str:
"""检测列的数据类型 - 改进版:区分数值和文本型数字"""
if not column_values:
return 'text'
# 过滤空值, 如果只有1个代表空值的字符,如:"/"、"-",也视为空值
non_empty_values = [v for v in column_values if v and v.strip() and v not in ['/', '-']]
if not non_empty_values:
return 'text'
# ✅ 优先检测文本型数字(账号、订单号等)
text_number_count = 0
for value in non_empty_values[:5]:
if self.is_text_number(value):
text_number_count += 1
if text_number_count >= len(non_empty_values[:5]) * 0.6:
return 'text' # ✅ 新增类型
# 检测是否为日期时间
datetime_patterns = [
r'\d{4}[-/]\d{1,2}[-/]\d{1,2}', # YYYY-MM-DD
r'\d{4}[-/]\d{1,2}[-/]\d{1,2}\s*\d{1,2}:\d{1,2}:\d{1,2}', # YYYY-MM-DD HH:MM:SS
r'\d{4}年\d{1,2}月\d{1,2}日', # 中文日期
]
datetime_count = 0
for value in non_empty_values[:5]:
for pattern in datetime_patterns:
if re.search(pattern, value):
datetime_count += 1
break
if datetime_count >= len(non_empty_values[:5]) * 0.6:
return 'datetime'
# 检测是否为数字/金额(短数字)
numeric_count = 0
for value in non_empty_values[:5]:
if self.is_numeric(value) and not self.is_text_number(value):
numeric_count += 1
if numeric_count >= len(non_empty_values[:5]) * 0.6:
return 'numeric'
# 默认为文本
return 'text'
def normalize_text_number(self, text: str) -> str:
"""
标准化文本型数字:移除空格和连字符
Args:
text: 原始文本
Returns:
标准化后的文本
"""
if not text:
return ""
# 移除空格、连字符、全角空格
text = re.sub(r'[\s\-\u3000]', '', text)
return text
def compare_cell_value(self, value1: str, value2: str, column_type: str,
column_name: str = '') -> Dict:
"""比较单元格值 - 改进版:支持文本型数字"""
result = {
'match': True,
'difference': None
}
# 标准化值
v1 = self.normalize_text(value1)
v2 = self.normalize_text(value2)
if v1 == v2:
return result
# ✅ 新增:文本型数字比较
if column_type == 'text_number':
# 标准化后比较(移除空格和连字符)
norm_v1 = self.normalize_text_number(v1)
norm_v2 = self.normalize_text_number(v2)
if norm_v1 == norm_v2:
# 内容相同,只是格式不同(空格差异)
result['match'] = False
result['difference'] = {
'type': 'table_text',
'value1': value1,
'value2': value2,
'description': f'文本型数字格式差异: "{value1}" vs "{value2}" (内容相同,空格不同)',
'severity': 'low'
}
else:
# 内容不同
result['match'] = False
result['difference'] = {
'type': 'table_text',
'value1': value1,
'value2': value2,
'description': f'文本型数字不一致: {value1} vs {value2}',
'severity': 'high'
}
return result
# 根据列类型采用不同的比较策略
if column_type == 'numeric':
# 数字/金额比较
if self.is_numeric(v1) and self.is_numeric(v2):
num1 = self.parse_number(v1) # ✅ 使用 parse_number
num2 = self.parse_number(v2)
if abs(num1 - num2) > 0.01: # 允许0.01的误差
result['match'] = False
result['difference'] = {
'type': 'table_amount',
'value1': value1,
'value2': value2,
'diff_amount': abs(num1 - num2),
'description': f'金额不一致: {value1} vs {value2}'
}
else:
# 虽然检测为 numeric,但实际是长数字,按文本比较
result['match'] = False
result['difference'] = {
'type': 'table_text',
'value1': value1,
'value2': value2,
'description': f'长数字字符串不一致: {value1} vs {value2}'
}
elif column_type == 'datetime':
# 日期时间比较
datetime1 = self.extract_datetime(v1) # ✅ 使用 extract_datetime
datetime2 = self.extract_datetime(v2)
if datetime1 != datetime2:
result['match'] = False
result['difference'] = {
'type': 'table_datetime',
'value1': value1,
'value2': value2,
'description': f'日期时间不一致: {value1} vs {value2}'
}
else:
# 文本比较
similarity = self.calculate_text_similarity(v1, v2)
if similarity < self.content_similarity_threshold:
result['match'] = False
result['difference'] = {
'type': 'table_text',
'value1': value1,
'value2': value2,
'similarity': similarity,
'description': f'文本不一致: {value1} vs {value2} (相似度: {similarity:.1f}%)'
}
return result
def calculate_text_similarity(self, text1: str, text2: str) -> float:
"""改进的相似度计算"""
if not text1 and not text2:
return 100.0
if not text1 or not text2:
return 0.0
# 如果标准化后完全相同,返回100%
if text1 == text2:
return 100.0
# 使用多种相似度算法
similarity_scores = [
fuzz.ratio(text1, text2),
# fuzz.partial_ratio(text1, text2),
# fuzz.token_sort_ratio(text1, text2),
# fuzz.token_set_ratio(text1, text2)
]
# 对于包含关系,给予更高的权重
# if text1 in text2 or text2 in text1:
# max_score = max(similarity_scores)
# # 提升包含关系的相似度
# return min(100.0, max_score + 10)
return max(similarity_scores)
def strip_markdown_formatting(self, text: str) -> str:
"""移除Markdown格式标记,只保留纯文本内容"""
if not text:
return ""
# 移除标题标记 (# ## ### 等)
text = re.sub(r'^#+\s*', '', text)
# 移除粗体标记 (**text** 或 __text__)
text = re.sub(r'\*\*(.+?)\*\*', r'\1', text)
text = re.sub(r'__(.+?)__', r'\1', text)
# 移除斜体标记 (*text* 或 _text_)
text = re.sub(r'\*(.+?)\*', r'\1', text)
text = re.sub(r'_(.+?)_', r'\1', text)
# 移除链接 [text](url)
text = re.sub(r'\[(.+?)\]\(.+?\)', r'\1', text)
# 移除图片引用 
text = re.sub(r'!\[.*?\]\(.+?\)', '', text)
# 移除代码标记 `code`
text = re.sub(r'`(.+?)`', r'\1', text)
# 移除HTML标签
text = re.sub(r'<[^>]+>', '', text)
# 移除列表标记 (- * + 1. 2. 等)
text = re.sub(r'^\s*[-*+]\s+', '', text)
text = re.sub(r'^\s*\d+\.\s+', '', text)
# 移除引用标记 (>)
text = re.sub(r'^\s*>\s+', '', text)
# 标准化空白字符
text = re.sub(r'\s+', ' ', text.strip())
return text
def normalize_text_for_comparison(self, text: str) -> str:
"""
用于比较的文本标准化:移除格式 + 标准化空白 + 统一标点
Args:
text: 原始文本
Returns:
标准化后的纯文本
"""
# 第一步:移除Markdown格式
text = self.strip_markdown_formatting(text)
# 第二步:统一标点符号(中英文转换)
text = self.normalize_punctuation(text)
# 第三步:标准化空白字符
text = self.normalize_text(text)
return text
def normalize_punctuation(self, text: str) -> str:
"""
统一标点符号 - 将中文标点转换为英文标点
Args:
text: 原始文本
Returns:
标点统一后的文本
"""
if not text:
return ""
# 中文标点到英文标点的映射
punctuation_map = {
':': ':', # 冒号
';': ';', # 分号
',': ',', # 逗号
'。': '.', # 句号
'!': '!', # 感叹号
'?': '?', # 问号
'(': '(', # 左括号
')': ')', # 右括号
'【': '[', # 左方括号
'】': ']', # 右方括号
'《': '<', # 左书名号
'》': '>', # 右书名号
'"': '"', # 左双引号
'"': '"', # 右双引号
''': "'", # 左单引号
''': "'", # 右单引号
'、': ',', # 顿号
'—': '-', # 破折号
'…': '...', # 省略号
'~': '~', # 波浪号
}
for cn_punct, en_punct in punctuation_map.items():
text = text.replace(cn_punct, en_punct)
return text
def check_punctuation_differences(self, text1: str, text2: str) -> List[Dict]:
"""
检查两段文本的标点符号差异
Args:
text1: 文本1
text2: 文本2
Returns:
标点差异列表
"""
differences = []
# 如果标准化后相同,说明只有标点差异
normalized1 = self.normalize_punctuation(text1)
normalized2 = self.normalize_punctuation(text2)
if normalized1 == normalized2 and text1 != text2:
# 找出具体的标点差异位置
min_len = min(len(text1), len(text2))
for i in range(min_len):
if text1[i] != text2[i]:
# 检查是否是全角半角标点的差异
char1 = text1[i]
char2 = text2[i]
# 使用normalize_punctuation检查是否是对应的全角半角
if self.normalize_punctuation(char1) == self.normalize_punctuation(char2):
# 提取上下文(前后各3个字符)
start = max(0, i - 3)
end = min(len(text1), i + 4)
context1 = text1[start:end]
context2 = text2[start:end]
differences.append({
'position': i,
'char1': char1,
'char2': char2,
'context1': context1,
'context2': context2,
'type': 'full_half_width'
})
return differences
def compare_paragraphs_with_flexible_matching(self, paras1: List[str], paras2: List[str]) -> List[Dict]:
"""改进的段落匹配算法 - 更好地处理段落重组"""
"""_summary_
paras1: 文件1的段落列表
paras2: 文件2的段落列表
paras1和paras2中的段落顺序有可能不一致,需要对窗口内的段落进行匹配,窗口的段落的顺序可以不一样
para1和para2中的段落可能存在合并或拆分的情况,需要考虑这种情况
"""
differences = []
# ✅ 预处理:移除格式并统一标点(用于匹配)
normalized_paras1 = [self.normalize_text_for_comparison(p) for p in paras1]
normalized_paras2 = [self.normalize_text_for_comparison(p) for p in paras2]
# 但保留原始文本(用于差异检测)
original_paras1 = [self.strip_markdown_formatting(p) for p in paras1]
original_paras2 = [self.strip_markdown_formatting(p) for p in paras2]
# 使用预处理后的段落进行匹配
used_paras1 = set()
used_paras2 = set()
# 文件1和文件2同时向下遍历
start_index2 = 0
last_match_index2 = 0
for window_size1 in range(1, min(self.max_paragraph_window, len(normalized_paras1) + 1)):
for i in range(len(normalized_paras1) - window_size1 + 1):
# 跳过已使用的段落
if any(idx in used_paras1 for idx in range(i, i + window_size1)):
continue
# 合并文件1中的段落(用于匹配的标准化版本)
combined_normalized1 = "".join(normalized_paras1[i:i+window_size1])
# 合并文件1中的段落(原始版本,用于差异检测)
combined_original1 = "".join(original_paras1[i:i+window_size1])
# 查找最佳匹配
best_match = self._find_best_match_in_paras2_improved(
combined_normalized1,
normalized_paras2,
start_index2,
last_match_index2,
used_paras2
)
if best_match and best_match['similarity'] >= self.paragraph_match_threshold:
# 更新搜索位置
matched_indices = best_match['indices']
last_match_index2 = matched_indices[-1]
start_index2 = last_match_index2 + 1
# 记录匹配
for idx in range(i, i + window_size1):
used_paras1.add(idx)
for idx in matched_indices:
used_paras2.add(idx)
# ✅ 获取原始文本(未标准化标点的版本)
combined_original2 = "".join([original_paras2[idx] for idx in matched_indices])
# ✅ 检查标点差异
punctuation_diffs = self.check_punctuation_differences(
combined_original1,
combined_original2
)
if punctuation_diffs:
# 有标点差异
diff_description = []
for pdiff in punctuation_diffs:
diff_description.append(
f"位置{pdiff['position']}: '{pdiff['char1']}' vs '{pdiff['char2']}' "
f"(上下文: ...{pdiff['context1']}... vs ...{pdiff['context2']}...)"
)
differences.append({
'type': 'paragraph_punctuation', # ✅ 新类型
'position': f'段落{i+1}' + (f'-{i+window_size1}' if window_size1 > 1 else ''),
'file1_value': combined_original1,
'file2_value': combined_original2,
'description': f'段落全角半角标点差异: {"; ".join(diff_description)}',
'punctuation_differences': punctuation_diffs,
'similarity': 100.0, # 内容完全相同
'severity': 'low'
})
elif best_match['similarity'] < self.content_similarity_threshold:
# 内容有差异
severity = 'low' if best_match['similarity'] >= 90 else 'medium'
differences.append({
'type': 'paragraph',
'position': f'段落{i+1}' + (f'-{i+window_size1}' if window_size1 > 1 else ''),
'file1_value': combined_original1,
'file2_value': combined_original2,
'description': f'段落内容差异 (相似度: {best_match["similarity"]:.1f}%)',
'similarity': best_match['similarity'],
'severity': severity
})
# 如果文件2已全部匹配完,退出
if len(used_paras2) >= len(normalized_paras2):
return differences
# 处理未匹配的段落
for i, para in enumerate(original_paras1):
if i not in used_paras1:
differences.append({
'type': 'paragraph',
'position': f'段落{i+1}',
'file1_value': para,
'file2_value': "",
'description': '文件1中独有的段落',
'similarity': 0.0,
'severity': 'medium'
})
for j, para in enumerate(original_paras2):
if j not in used_paras2:
differences.append({
'type': 'paragraph',
'position': f'段落{j+1}',
'file1_value': "",
'file2_value': para,
'description': '文件2中独有的段落',
'similarity': 0.0,
'severity': 'medium'
})
return differences
def _find_best_match_in_paras2_improved(self, target_text: str, paras2: List[str],
start_index: int, last_match_index: int,
used_paras2: set) -> Dict:
"""
改进的段落匹配方法 - 借鉴 _find_matching_bbox 的窗口查找逻辑
Args:
target_text: 目标文本(已标准化)
paras2: 文件2的段落列表(已标准化)
start_index: 起始搜索索引(上次匹配后的下一个位置)
last_match_index: 上次匹配成功的索引
used_paras2: 已使用的段落索引集合
Returns:
最佳匹配结果
"""
# ✅ 向前查找窗口(类似 _find_matching_bbox)
search_start = last_match_index - 1
unused_count = 0
# 向前找到 look_ahead_window 个未使用的段落
while search_start >= 0:
if search_start not in used_paras2:
unused_count += 1
if unused_count >= self.max_paragraph_window:
break
search_start -= 1
if search_start < 0:
search_start = 0
# 跳过开头已使用的段落
while search_start < start_index and search_start in used_paras2:
search_start += 1
# 搜索范围:从 search_start 到 start_index + window
search_end = min(start_index + self.max_paragraph_window, len(paras2))
best_match = None
# ✅ 遍历不同窗口大小
for window_size in range(1, self.max_paragraph_window + 1):
for j in range(search_start, search_end):
# ✅ 跳过已使用的段落
if any(idx in used_paras2 for idx in range(j, min(j + window_size, len(paras2)))):
continue
# 确保不越界
if j + window_size > len(paras2):
break
# 合并段落
combined_para2 = "".join(paras2[j:j+window_size])
# 计算相似度
if target_text == combined_para2:
similarity = 100.0
else:
similarity = self.calculate_text_similarity(target_text, combined_para2)
# 更新最佳匹配
if not best_match or similarity > best_match['similarity']:
best_match = {
'text': combined_para2,
'similarity': similarity,
'indices': list(range(j, j + window_size))
}
# ✅ 如果找到完美匹配,提前返回
if similarity == 100.0:
return best_match
# 如果没有找到匹配,返回空结果
if best_match is None:
return {
'text': '',
'similarity': 0.0,
'indices': []
}
return best_match
def normalize_header_text(self, text: str) -> str:
"""标准化表头文本"""
# 移除括号及其内容
text = re.sub(r'[((].*?[))]', '', text)
# 统一空格
text = re.sub(r'\s+', '', text)
# 移除特殊字符
text = re.sub(r'[^\w\u4e00-\u9fff]', '', text)
return text.lower().strip()
def compare_table_headers(self, headers1: List[str], headers2: List[str]) -> Dict:
"""比较表格表头"""
result = {
'match': True,
'differences': [],
'column_mapping': {}, # 列映射关系
'similarity_scores': []
}
if len(headers1) != len(headers2):
result['match'] = False
result['differences'].append({
'type': 'table_header_critical',
'description': f'表头列数不一致: {len(headers1)} vs {len(headers2)}',
'severity': 'critical'
})
return result
# 逐列比较表头
for i, (h1, h2) in enumerate(zip(headers1, headers2)):
norm_h1 = self.normalize_header_text(h1)
norm_h2 = self.normalize_header_text(h2)
similarity = self.calculate_text_similarity(norm_h1, norm_h2)
result['similarity_scores'].append({
'column_index': i,
'header1': h1,
'header2': h2,
'similarity': similarity
})
if similarity < self.header_similarity_threshold:
result['match'] = False
result['differences'].append({
'type': 'table_header_mismatch',
'column_index': i,
'header1': h1,
'header2': h2,
'similarity': similarity,
'description': f'第{i+1}列表头不匹配: "{h1}" vs "{h2}" (相似度: {similarity:.1f}%)',
'severity': 'medium' if similarity < 50 else 'high'
})
else:
result['column_mapping'][i] = i # 建立列映射
return result
def detect_table_header_row(self, table: List[List[str]]) -> int:
"""
智能检测表格的表头行索引
策略:
1. 查找包含典型表头关键词的行(如:序号、编号、时间、日期、金额等)
2. 检查该行后续行是否为数据行(包含数字、日期等)
3. 返回表头行的索引,如果找不到则返回0
"""
# 常见表头关键词
header_keywords = [
# 通用表头
'序号', '编号', '时间', '日期', '名称', '类型', '金额', '数量', '单价',
'备注', '说明', '状态', '类别', '方式', '账号', '单号', '订单',
# 流水表格特定
'交易单号', '交易时间', '交易类型', '收/支', '支出', '收入',
'交易方式', '交易对方', '商户单号', '付款方式', '收款方',
# 英文表头
'no', 'id', 'time', 'date', 'name', 'type', 'amount', 'status'
]
for row_idx, row in enumerate(table):
if not row:
continue
# 计算该行包含表头关键词的单元格数量
keyword_count = 0
for cell in row:
cell_lower = cell.lower().strip()
for keyword in header_keywords:
if keyword in cell_lower:
keyword_count += 1
break
# 如果超过一半的单元格包含表头关键词,认为是表头行
if keyword_count >= len(row) * 0.4 and keyword_count >= 2:
# 验证:检查下一行是否像数据行
if row_idx + 1 < len(table):
next_row = table[row_idx + 1]
if self.is_data_row(next_row):
print(f" 📍 检测到表头在第 {row_idx + 1} 行")
return row_idx
# 如果没有找到明确的表头行,返回0(默认第一行)
print(f" ⚠️ 未检测到明确表头,默认使用第1行")
return 0
def is_data_row(self, row: List[str]) -> bool:
"""判断是否为数据行(包含数字、日期等)"""
data_pattern_count = 0
for cell in row:
if not cell:
continue
# 检查是否包含数字
if re.search(r'\d', cell):
data_pattern_count += 1
# 检查是否为日期时间格式
if re.search(r'\d{4}[-/年]\d{1,2}[-/月]\d{1,2}', cell):
data_pattern_count += 1
# 如果超过一半的单元格包含数据特征,认为是数据行
return data_pattern_count >= len(row) * 0.5
def compare_table_flow_list(self, table1: List[List[str]], table2: List[List[str]]) -> List[Dict]:
"""专门的流水列表表格比较算法 - 支持表头不在第一行"""
differences = []
if not table1 or not table2:
return [{
'type': 'table_empty',
'description': '表格为空',
'severity': 'critical'
}]
print(f"\n📋 开始流水表格对比...")
# 第一步:智能检测表头位置
header_row_idx1 = self.detect_table_header_row(table1)
header_row_idx2 = self.detect_table_header_row(table2)
if header_row_idx1 != header_row_idx2:
differences.append({
'type': 'table_header_position',
'position': '表头位置',
'file1_value': f'第{header_row_idx1 + 1}行',
'file2_value': f'第{header_row_idx2 + 1}行',
'description': f'表头位置不一致: 文件1在第{header_row_idx1 + 1}行,文件2在第{header_row_idx2 + 1}行',
'severity': 'high'
})
# 第二步:比对表头前的内容(按单元格比对)
if header_row_idx1 > 0 or header_row_idx2 > 0:
print(f"\n📝 对比表头前的内容...")
# 提取表头前的内容作为单独的"表格"
pre_header_table1 = table1[:header_row_idx1] if header_row_idx1 > 0 else []
pre_header_table2 = table2[:header_row_idx2] if header_row_idx2 > 0 else []
if pre_header_table1 or pre_header_table2:
# 复用compare_tables方法进行比对
pre_header_diffs = self.compare_tables(pre_header_table1, pre_header_table2)
# 修改:统一类型为 table_pre_header
for diff in pre_header_diffs:
diff['type'] = 'table_pre_header'
diff['position'] = f"表头前{diff['position']}"
diff['severity'] = 'medium'
print(f" ⚠️ {diff['position']}: {diff['description']}")
differences.extend(pre_header_diffs)
# 第三步:比较表头
headers1 = table1[header_row_idx1]
headers2 = table2[header_row_idx2]
print(f"\n📋 对比表头...")
print(f" 文件1表头 (第{header_row_idx1 + 1}行): {headers1}")
print(f" 文件2表头 (第{header_row_idx2 + 1}行): {headers2}")
header_result = self.compare_table_headers(headers1, headers2)
# ✅ 新增:检查列数是否一致
column_count_match = len(headers1) == len(headers2)
if not header_result['match']:
print(f"\n⚠️ 表头文字存在差异")
for diff in header_result['differences']:
print(f" - {diff['description']}")
differences.append({
'type': diff.get('type', 'table_header_mismatch'), # ✅ 改为 mismatch 而非 critical
'position': '表头',
'file1_value': diff.get('header1', ''),
'file2_value': diff.get('header2', ''),
'description': diff['description'],
'severity': diff.get('severity', 'high'),
})
if diff.get('severity', 'high') == 'critical':
return differences
else:
print(f"✅ 表头匹配成功")
# 第四步:检测列类型
column_types1 = []
column_types2 = []
# 检测文件1的列类型
for col_idx in range(len(headers1)):
col_values1 = [
row[col_idx]
for row in table1[header_row_idx1 + 1:]
if col_idx < len(row)
]
col_type = self.detect_column_type(col_values1)
column_types1.append(col_type)
print(f" 文件1列 {col_idx + 1} ({headers1[col_idx]}): {col_type}")
# 检测文件2的列类型
for col_idx in range(len(headers2)):
col_values2 = [
row[col_idx]
for row in table2[header_row_idx2 + 1:]
if col_idx < len(row)
]
col_type = self.detect_column_type(col_values2)
column_types2.append(col_type)
print(f" 文件2列 {col_idx + 1} ({headers2[col_idx]}): {col_type}")
# ✅ 改进:统计列类型差异,只有超过阈值才停止比较
mismatched_columns = []
for col_idx in range(min(len(column_types1), len(column_types2))):
if column_types1[col_idx] != column_types2[col_idx]:
mismatched_columns.append(col_idx)
differences.append({
'type': 'table_column_type_mismatch', # ✅ 新类型,区别于 critical
'position': f'第{col_idx + 1}列',
'file1_value': f'{headers1[col_idx]} ({column_types1[col_idx]})',
'file2_value': f'{headers2[col_idx]} ({column_types2[col_idx]})',
'description': f'列类型不一致: {column_types1[col_idx]} vs {column_types2[col_idx]}',
'severity': 'high',
'column_index': col_idx
})
# ✅ 计算列类型差异比例
total_columns = min(len(column_types1), len(column_types2))
mismatch_ratio = len(mismatched_columns) / total_columns if total_columns > 0 else 0
# ✅ 只有当差异比例超过50%时才停止比较
if mismatch_ratio > 0.5:
print(f"\n⚠️ 列类型差异过大 ({len(mismatched_columns)}/{total_columns} = {mismatch_ratio:.1%}),不再比较单元格内容...")
# 添加一个汇总差异
differences.append({
'type': 'table_header_critical',
'position': '表格列类型',
'file1_value': f'{len(mismatched_columns)}列类型不一致',
'file2_value': f'共{total_columns}列',
'description': f'列类型差异过大: {len(mismatched_columns)}/{total_columns}列不匹配 ({mismatch_ratio:.1%})',
'severity': 'critical'
})
return differences
elif mismatched_columns:
print(f"\n⚠️ 检测到 {len(mismatched_columns)} 列类型差异,但仍继续比较单元格...")
print(f" 不匹配的列: {[col_idx + 1 for col_idx in mismatched_columns]}")
# ✅ 为每列选择更合适的类型(优先使用数据更丰富的文件)
column_types = []
for col_idx in range(max(len(column_types1), len(column_types2))):
if col_idx >= len(column_types1):
column_types.append(column_types2[col_idx])
elif col_idx >= len(column_types2):
column_types.append(column_types1[col_idx])
elif col_idx in mismatched_columns:
# ✅ 对于类型不一致的列,选择更通用的类型
type1 = column_types1[col_idx]
type2 = column_types2[col_idx]
# 类型优先级: text > text_number > numeric/datetime
if type1 == 'text' or type2 == 'text':
column_types.append('text')
elif type1 == 'text_number' or type2 == 'text_number':
column_types.append('text_number')
else:
# 默认使用文件1的类型
column_types.append(type1)
print(f" 📝 第{col_idx + 1}列类型冲突,使用通用类型: {column_types[-1]}")
else:
column_types.append(column_types1[col_idx])
# 第五步:逐行比较数据
data_rows1 = table1[header_row_idx1 + 1:]
data_rows2 = table2[header_row_idx2 + 1:]
max_rows = max(len(data_rows1), len(data_rows2))
print(f"\n📊 开始逐行对比数据 (共{max_rows}行)...")
for row_idx in range(max_rows):
row1 = data_rows1[row_idx] if row_idx < len(data_rows1) else []
row2 = data_rows2[row_idx] if row_idx < len(data_rows2) else []
# 实际行号(加上表头行索引)
actual_row_num = header_row_idx1 + row_idx + 2
if not row1:
differences.append({
'type': 'table_row_missing',
'position': f'第{actual_row_num}行',
'file1_value': '',
'file2_value': ', '.join(row2),
'description': f'文件1缺少第{actual_row_num}行',
'severity': 'high',
'row_index': actual_row_num
})
continue
if not row2:
# ✅ 修改:整行缺失按单元格输出
differences.append({
'type': 'table_row_missing',
'position': f'第{actual_row_num}行',
'file1_value': ', '.join(row1),
'file2_value': '',
'description': f'文件2缺少第{actual_row_num}行',
'severity': 'high',
'row_index': actual_row_num
})
continue
# 逐列比较,每个单元格差异独立输出
max_cols = max(len(row1), len(row2))
for col_idx in range(max_cols):
cell1 = row1[col_idx] if col_idx < len(row1) else ''
cell2 = row2[col_idx] if col_idx < len(row2) else ''
# 跳过图片内容
if "[图片内容-忽略]" in cell1 or "[图片内容-忽略]" in cell2:
continue
# ✅ 使用合并后的列类型
column_type = column_types[col_idx] if col_idx < len(column_types) else 'text'
# ✅ 获取列名
if header_result['match']:
column_name = headers1[col_idx] if col_idx < len(headers1) else f'列{col_idx + 1}'
else:
col_name1 = headers1[col_idx] if col_idx < len(headers1) else f'列{col_idx + 1}'
col_name2 = headers2[col_idx] if col_idx < len(headers2) else f'列{col_idx + 1}'
column_name = f"{col_name1}/{col_name2}"
# ✅ 如果该列类型不匹配,在描述中标注
type_mismatch_note = ""
if col_idx in mismatched_columns:
type_mismatch_note = f" [列类型冲突: {column_types1[col_idx]} vs {column_types2[col_idx]}]"
compare_result = self.compare_cell_value(cell1, cell2, column_type, column_name)
if not compare_result['match']:
# ✅ 直接将单元格差异添加到differences列表
diff_info = compare_result['difference']
differences.append({
'type': diff_info['type'], # 使用原始类型(table_amount, table_text等)
'position': f'第{actual_row_num}行第{col_idx + 1}列',
'file1_value': diff_info['value1'],
'file2_value': diff_info['value2'],
'description': diff_info['description'] + type_mismatch_note, # ✅ 添加类型冲突标注
'severity': 'high' if col_idx in mismatched_columns else 'medium', # ✅ 类型冲突的单元格提高严重度
'row_index': actual_row_num,
'col_index': col_idx,
'column_name': column_name,
'column_type': column_type,
'column_type_mismatch': col_idx in mismatched_columns, # ✅ 新增字段
**{k: v for k, v in diff_info.items() if k not in ['type', 'value1', 'value2', 'description']}
})
print(f" ⚠️ 第{actual_row_num}行第{col_idx + 1}列({column_name}): {diff_info['description']}{type_mismatch_note}")
print(f"\n✅ 流水表格对比完成,发现 {len(differences)} 个差异")
return differences
def compare_tables_with_mode(self, table1: List[List[str]], table2: List[List[str]],
mode: str = 'standard') -> List[Dict]:
"""根据模式选择表格比较算法"""
if mode == 'flow_list':
return self.compare_table_flow_list(table1, table2)
else:
return self.compare_tables(table1, table2)
def compare_files(self, file1_path: str, file2_path: str) -> Dict:
"""改进的文件比较方法 - 支持不同的表格比较模式"""
# 读取文件
with open(file1_path, 'r', encoding='utf-8') as f:
content1 = f.read()
with open(file2_path, 'r', encoding='utf-8') as f:
content2 = f.read()
# 提取表格和段落
tables1 = self.extract_table_data(content1)
tables2 = self.extract_table_data(content2)
paras1 = self.extract_paragraphs(content1)
paras2 = self.extract_paragraphs(content2)
# 比较结果
all_differences = []
# 比较表格 - 使用指定的比较模式
if tables1 and tables2:
table_diffs = self.compare_tables_with_mode(
tables1[0], tables2[0],
mode=self.table_comparison_mode
)
all_differences.extend(table_diffs)
elif tables1 and not tables2:
all_differences.append({
'type': 'table_structure',
'position': '表格结构',
'file1_value': f'包含{len(tables1)}个表格',
'file2_value': '无表格',
'description': '文件1包含表格但文件2无表格',
'severity': 'high'
})
elif not tables1 and tables2:
all_differences.append({
'type': 'table_structure',
'position': '表格结构',
'file1_value': '无表格',
'file2_value': f'包含{len(tables2)}个表格',
'description': '文件2包含表格但文件1无表格',
'severity': 'high'
})
# 使用增强的段落比较
para_diffs = self.compare_paragraphs_with_flexible_matching(paras1, paras2)
all_differences.extend(para_diffs)
# ✅ 改进统计信息 - 细化分类
stats = {
'total_differences': len(all_differences),
'table_differences': len([d for d in all_differences if d['type'].startswith('table')]),
'paragraph_differences': len([d for d in all_differences if d['type'] == 'paragraph']),
'amount_differences': len([d for d in all_differences if d['type'] == 'table_amount']),
'datetime_differences': len([d for d in all_differences if d['type'] == 'table_datetime']),
'text_differences': len([d for d in all_differences if d['type'] == 'table_text']),
'table_pre_header': len([d for d in all_differences if d['type'] == 'table_pre_header']),
'table_header_mismatch': len([d for d in all_differences if d['type'] == 'table_header_mismatch']), # ✅ 新增
'table_header_critical': len([d for d in all_differences if d['type'] == 'table_header_critical']), # ✅ 新增
'table_header_position': len([d for d in all_differences if d['type'] == 'table_header_position']),
'table_row_missing': len([d for d in all_differences if d['type'] == 'table_row_missing']),
'high_severity': len([d for d in all_differences if d.get('severity') == 'critical' or d.get('severity') == 'high']),
'medium_severity': len([d for d in all_differences if d.get('severity') == 'medium']),
'low_severity': len([d for d in all_differences if d.get('severity') == 'low'])
}
result = {
'differences': all_differences,
'statistics': stats,
'file1_tables': len(tables1),
'file2_tables': len(tables2),
'file1_paragraphs': len(paras1),
'file2_paragraphs': len(paras2),
'file1_path': file1_path,
'file2_path': file2_path,
}
return result
def generate_json_report(self, comparison_result: Dict, output_file: str):
"""生成JSON格式的比较报告"""
# report_data = {
# 'comparison_summary': {
# 'timestamp': re.sub(r'[^\w\-_\.]', '_', str(comparison_result.get('timestamp', ''))),
# 'file1': comparison_result['file1_path'],
# 'file2': comparison_result['file2_path'],
# 'statistics': comparison_result['statistics'],
# 'file_info': {
# 'file1_tables': comparison_result['file1_tables'],
# 'file2_tables': comparison_result['file2_tables'],
# 'file1_paragraphs': comparison_result['file1_paragraphs'],
# 'file2_paragraphs': comparison_result['file2_paragraphs']
# }
# },
# 'differences': comparison_result['differences']
# }
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(comparison_result, f, ensure_ascii=False, indent=2)
def generate_markdown_report(self, comparison_result: Dict, output_file: str):
"""生成Markdown格式的比较报告 - 修复类型映射"""
with open(output_file, 'w', encoding='utf-8') as f:
f.write("# OCR结果对比报告\n\n")
# 基本信息
f.write("## 基本信息\n\n")
f.write(f"- **文件1**: `{comparison_result['file1_path']}`\n")
f.write(f"- **文件2**: `{comparison_result['file2_path']}`\n")
f.write(f"- **比较时间**: {comparison_result.get('timestamp', 'N/A')}\n\n")
# 统计信息
stats = comparison_result['statistics']
f.write("## 统计信息\n\n")
f.write(f"- 总差异数量: **{stats['total_differences']}**\n")
f.write(f"- 表格差异: **{stats['table_differences']}**\n")
f.write(f"- 其中表格金额差异: **{stats['amount_differences']}**\n")
f.write(f"- 段落差异: **{stats['paragraph_differences']}**\n")
f.write(f"- 高严重度: **{stats['high_severity']}**\n") # ✅ 新增
f.write(f"- 中严重度: **{stats['medium_severity']}**\n") # ✅ 新增
f.write(f"- 低严重度: **{stats['low_severity']}**\n") # ✅ 新增
f.write(f"- 文件1表格数: {comparison_result['file1_tables']}\n")
f.write(f"- 文件2表格数: {comparison_result['file2_tables']}\n")
f.write(f"- 文件1段落数: {comparison_result['file1_paragraphs']}\n")
f.write(f"- 文件2段落数: {comparison_result['file2_paragraphs']}\n\n")
# 差异摘要
if stats['total_differences'] == 0:
f.write("## 结论\n\n")
f.write("🎉 **完美匹配!没有发现任何差异。**\n\n")
else:
f.write("## 差异摘要\n\n")
# ✅ 更新类型映射
type_name_map = {
'table_amount': '💰 表格金额差异',
'table_text': '📝 表格文本差异',
'table_pre_header': '📋 表头前内容差异',
'table_header_position': '📍 表头位置差异',
'table_header_critical': '❌ 表头严重错误',
'table_row_missing': '🚫 表格行缺失',
'table_row_data': '📊 表格数据差异',
'table_structure': '🏗️ 表格结构差异',
'paragraph': '📄 段落差异'
}
# 按类型分组显示差异
diff_by_type = {}
for diff in comparison_result['differences']:
diff_type = diff['type']
if diff_type not in diff_by_type:
diff_by_type[diff_type] = []
diff_by_type[diff_type].append(diff)
for diff_type, diffs in diff_by_type.items():
type_name = type_name_map.get(diff_type, f'❓ {diff_type}')
f.write(f"### {type_name} ({len(diffs)}个)\n\n")
for i, diff in enumerate(diffs, 1):
f.write(f"**{i}. {diff['position']}**\n")
f.write(f"- 文件1: `{diff['file1_value']}`\n")
f.write(f"- 文件2: `{diff['file2_value']}`\n")
f.write(f"- 说明: {diff['description']}\n")
if 'severity' in diff:
severity_icon = {'critical': '🔴', 'high': '🟠', 'medium': '🟡', 'low': '🟢'}
f.write(f"- 严重度: {severity_icon.get(diff['severity'], '⚪')} {diff['severity']}\n")
f.write("\n")
# 详细差异列表
if comparison_result['differences']:
f.write("## 详细差异列表\n\n")
f.write("| 序号 | 类型 | 位置 | 文件1内容 | 文件2内容 | 描述 | 严重度 |\n")
f.write("| --- | --- | --- | --- | --- | --- | --- |\n")
for i, diff in enumerate(comparison_result['differences'], 1):
severity = diff.get('severity', 'N/A')
f.write(f"| {i} | {diff['type']} | {diff['position']} | ")
f.write(f"`{diff['file1_value'][:50]}{'...' if len(diff['file1_value']) > 50 else ''}` | ")
f.write(f"`{diff['file2_value'][:50]}{'...' if len(diff['file2_value']) > 50 else ''}` | ")
f.write(f"{diff['description']} | {severity} |\n")
def compare_ocr_results(file1_path: str, file2_path: str, output_file: str = "comparison_report",
output_format: str = "markdown", ignore_images: bool = True,
table_mode: str = 'standard', similarity_algorithm: str = 'ratio') -> Dict:
"""
比较两个OCR结果文件
Args:
file1_path: 第一个OCR结果文件路径
file2_path: 第二个OCR结果文件路径
output_file: 输出文件名(不含扩展名)
output_format: 输出格式 ('json', 'markdown', 'both')
ignore_images: 是否忽略图片内容
table_mode: 表格比较模式 ('standard', 'flow_list')
similarity_algorithm: 相似度算法 ('ratio', 'partial_ratio', 'token_sort_ratio', 'token_set_ratio')
"""
comparator = OCRResultComparator()
comparator.table_comparison_mode = table_mode
# 根据参数选择相似度算法
if similarity_algorithm == 'partial_ratio':
comparator.calculate_text_similarity = lambda t1, t2: fuzz.partial_ratio(t1, t2)
elif similarity_algorithm == 'token_sort_ratio':
comparator.calculate_text_similarity = lambda t1, t2: fuzz.token_sort_ratio(t1, t2)
elif similarity_algorithm == 'token_set_ratio':
comparator.calculate_text_similarity = lambda t1, t2: fuzz.token_set_ratio(t1, t2)
print("🔍 开始对比OCR结果...")
print(f"📄 文件1: {file1_path}")
print(f"📄 文件2: {file2_path}")
print(f"📊 表格模式: {table_mode}")
print(f"🔧 相似度算法: {similarity_algorithm}")
try:
# 执行比较
result = comparator.compare_files(file1_path, file2_path)
# 添加时间戳
import datetime
result['timestamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 生成报告
if output_format in ['json', 'both']:
json_file = f"{output_file}.json"
comparator.generate_json_report(result, json_file)
print(f"📄 JSON报告已保存至: {json_file}")
if output_format in ['markdown', 'both']:
md_file = f"{output_file}.md"
comparator.generate_markdown_report(result, md_file)
print(f"📝 Markdown报告已保存至: {md_file}")
# 打印简要结果
print(f"\n📊 对比完成!")
print(f" 总差异数: {result['statistics']['total_differences']}")
print(f" 表格差异: {result['statistics']['table_differences']}")
print(f" 其中表格金额差异: {result['statistics']['amount_differences']}")
print(f" 段落差异: {result['statistics']['paragraph_differences']}")
# 打印前几个重要差异
if result['differences']:
print(f"\n🔍 前3个重要差异:")
for i, diff in enumerate(result['differences'][:3], 1):
print(f" {i}. {diff['position']}: {diff['description']}")
print(f" 文件1: '{diff['file1_value'][:50]}{'...' if len(diff['file1_value']) > 50 else ''}'")
print(f" 文件2: '{diff['file2_value'][:50]}{'...' if len(diff['file2_value']) > 50 else ''}'")
else:
print(f"\n🎉 恭喜!两个文件内容完全一致!")
# 添加处理统计信息(模仿 ocr_by_vlm.py 的风格)
print("\n📊 对比处理统计")
print(f" 文件1路径: {result['file1_path']}")
print(f" 文件2路径: {result['file2_path']}")
print(f" 输出文件: {output_file}")
print(f" 输出格式: {output_format}")
print(f" 忽略图片: {ignore_images}")
print(f" 处理时间: {result['timestamp']}")
print(f" 文件1表格数: {result['file1_tables']}")
print(f" 文件2表格数: {result['file2_tables']}")
print(f" 文件1段落数: {result['file1_paragraphs']}")
print(f" 文件2段落数: {result['file2_paragraphs']}")
return result
except Exception as e:
import traceback
traceback.print_exc()
raise Exception(f"OCR对比任务失败: {e}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='OCR结果对比工具')
parser.add_argument('file1', nargs='?', help='第一个OCR结果文件路径')
parser.add_argument('file2', nargs='?', help='第二个OCR结果文件路径')
parser.add_argument('-o', '--output', default='comparison_report', help='输出文件名')
parser.add_argument('-f', '--format', choices=['json', 'markdown', 'both'],
default='markdown', help='输出格式')
parser.add_argument('--ignore-images', action='store_true', help='忽略图片内容')
parser.add_argument('--table-mode', choices=['standard', 'flow_list'],
default='standard', help='表格比较模式')
parser.add_argument('--similarity-algorithm',
choices=['ratio', 'partial_ratio', 'token_sort_ratio', 'token_set_ratio'],
default='ratio', help='相似度算法')
args = parser.parse_args()
if args.file1 and args.file2:
result = compare_ocr_results(
file1_path=args.file1,
file2_path=args.file2,
output_file=args.output,
output_format=args.format,
ignore_images=args.ignore_images,
table_mode=args.table_mode,
similarity_algorithm=args.similarity_algorithm
)
else:
# 测试流水表格对比
result = compare_ocr_results(
file1_path='/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/merged_results/A用户_单元格扫描流水_page_005.md',
file2_path='/Users/zhch158/workspace/data/流水分析/A用户_单元格扫描流水/data_DotsOCR_Results/A用户_单元格扫描流水_page_005.md',
output_file=f'./output/flow_list_comparison_{time.strftime("%Y%m%d_%H%M%S")}',
output_format='both',
ignore_images=True,
table_mode='flow_list', # 使用流水表格模式
similarity_algorithm='ratio'
)