""" 表格单元格匹配器 负责将 HTML 表格单元格与 PaddleOCR bbox 进行匹配 """ from typing import List, Dict, Tuple, Optional from bs4 import BeautifulSoup import numpy as np try: from .text_matcher import TextMatcher except ImportError: from text_matcher import TextMatcher class TableCellMatcher: """表格单元格匹配器""" def __init__(self, text_matcher: TextMatcher, x_tolerance: int = 3, y_tolerance: int = 10): """ Args: text_matcher: 文本匹配器 x_tolerance: X轴容差(用于列边界判断) y_tolerance: Y轴容差(用于行分组) """ self.text_matcher = text_matcher self.x_tolerance = x_tolerance self.y_tolerance = y_tolerance def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict], start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]: """ 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域) 策略: 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes 2. 将筛选后的 boxes 按行分组 3. 智能匹配 HTML 行与 paddle 行组 4. 在匹配的组内查找单元格 Args: html: HTML 表格 paddle_text_boxes: 全部 paddle OCR 结果 start_pointer: 开始位置 table_bbox: 表格边界框 [x1, y1, x2, y2] """ soup = BeautifulSoup(html, 'html.parser') cells = [] # 🔑 第一步:筛选表格区域内的 paddle boxes table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region( paddle_text_boxes[start_pointer:], table_bbox, html ) if not table_region_boxes: print(f"⚠️ 未在表格区域找到 paddle boxes") return str(soup), cells, start_pointer print(f"📊 表格区域: {len(table_region_boxes)} 个文本框") print(f" 边界: {actual_table_bbox}") # 🔑 第二步:将表格区域的 boxes 按行分组 grouped_boxes = self._group_paddle_boxes_by_rows( table_region_boxes, y_tolerance=self.y_tolerance, auto_correct_skew=True ) # 🔑 第三步:在每组内按 x 坐标排序 for group in grouped_boxes: group['boxes'].sort(key=lambda x: x['bbox'][0]) grouped_boxes.sort(key=lambda g: g['y_center']) print(f" 分组: {len(grouped_boxes)} 行") # 🔑 第四步:智能匹配 HTML 行与 paddle 行组 html_rows = soup.find_all('tr') row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes) print(f" HTML行: {len(html_rows)} 行") print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射") # 🔑 第五步:遍历 HTML 表格,使用映射关系查找 for row_idx, row in enumerate(html_rows): group_indices = row_mapping.get(row_idx, []) if not group_indices: continue # 合并多个组的 boxes current_boxes = [] for group_idx in group_indices: if group_idx < len(grouped_boxes): current_boxes.extend(grouped_boxes[group_idx]['boxes']) current_boxes.sort(key=lambda x: x['bbox'][0]) # 🎯 关键改进:提取 HTML 单元格并预先确定列边界 html_cells = row.find_all(['td', 'th']) if not html_cells: continue # 🔑 预估列边界(基于 x 坐标分布) col_boundaries = self._estimate_column_boundaries( current_boxes, len(html_cells) ) print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}") # 🎯 关键改进:顺序指针匹配 box_pointer = 0 # 当前行的 boxes 指针 for col_idx, cell in enumerate(html_cells): cell_text = cell.get_text(strip=True) if not cell_text: continue # 🔑 从当前指针开始匹配 matched_result = self._match_cell_sequential( cell_text, current_boxes, col_boundaries, box_pointer ) if matched_result: merged_bbox = matched_result['bbox'] merged_text = matched_result['text'] cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]" cell['data-score'] = f"{matched_result['score']:.4f}" cell['data-paddle-indices'] = str(matched_result['paddle_indices']) cells.append({ 'type': 'table_cell', 'text': cell_text, 'matched_text': merged_text, 'bbox': merged_bbox, 'row': row_idx + 1, 'col': col_idx + 1, 'score': matched_result['score'], 'paddle_bbox_indices': matched_result['paddle_indices'] }) # 标记已使用 for box in matched_result['used_boxes']: box['used'] = True # 🎯 移动指针到最后使用的 box 之后 box_pointer = matched_result['last_used_index'] + 1 print(f" 列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})") # 计算新的指针位置 used_count = sum(1 for box in table_region_boxes if box.get('used')) new_pointer = start_pointer + used_count print(f" 匹配: {len(cells)} 个单元格") return str(soup), cells, new_pointer def _estimate_column_boundaries(self, boxes: List[Dict], num_cols: int) -> List[Tuple[int, int]]: """ 估算列边界(改进版:处理同列多文本框) Args: boxes: 当前行的所有 boxes(已按 x 排序) num_cols: HTML 表格的列数 Returns: 列边界列表 [(x_start, x_end), ...] """ if not boxes: return [] # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框) x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance) print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇") # 获取所有 x 坐标范围 x_min = min(cluster['x_min'] for cluster in x_clusters) x_max = max(cluster['x_max'] for cluster in x_clusters) # 🎯 策略 1: 如果聚类数量<=列数接近 if len(x_clusters) <= num_cols: # 直接使用聚类边界 boundaries = [(cluster['x_min'], cluster['x_max']) for cluster in x_clusters] return boundaries # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇) if len(x_clusters) > num_cols: print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇") # 合并相近的簇 merged_clusters = self._merge_close_clusters(x_clusters, num_cols) boundaries = [(cluster['x_min'], cluster['x_max']) for cluster in merged_clusters] return boundaries return [] def _cluster_boxes_by_x(self, boxes: List[Dict], x_tolerance: int = 3) -> List[Dict]: """ 按 x 坐标聚类(合并同列的多个文本框) Args: boxes: 文本框列表 x_tolerance: X坐标容忍度 Returns: 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...] """ if not boxes: return [] # 按左边界 x 坐标排序 sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0]) clusters = [] current_cluster = None for box in sorted_boxes: bbox = box['bbox'] x_start = bbox[0] x_end = bbox[2] if current_cluster is None: # 开始新簇 current_cluster = { 'x_min': x_start, 'x_max': x_end, 'boxes': [box] } else: # 🔑 检查是否属于当前簇(修正后的逻辑) # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min # 2. 或者距离在容忍度内 has_overlap = (x_start <= current_cluster['x_max'] and x_end >= current_cluster['x_min']) is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance if has_overlap or is_close: # 合并到当前簇 current_cluster['boxes'].append(box) current_cluster['x_min'] = min(current_cluster['x_min'], x_start) current_cluster['x_max'] = max(current_cluster['x_max'], x_end) else: # 保存当前簇,开始新簇 clusters.append(current_cluster) current_cluster = { 'x_min': x_start, 'x_max': x_end, 'boxes': [box] } # 添加最后一簇 if current_cluster: clusters.append(current_cluster) return clusters def _merge_close_clusters(self, clusters: List[Dict], target_count: int) -> List[Dict]: """ 合并相近的簇,直到数量等于目标列数 Args: clusters: 聚类列表 target_count: 目标列数 Returns: 合并后的聚类列表 """ if len(clusters) <= target_count: return clusters # 复制一份,避免修改原数据 working_clusters = [c.copy() for c in clusters] while len(working_clusters) > target_count: # 找到距离最近的两个簇 min_distance = float('inf') merge_idx = 0 for i in range(len(working_clusters) - 1): distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max'] if distance < min_distance: min_distance = distance merge_idx = i # 合并 cluster1 = working_clusters[merge_idx] cluster2 = working_clusters[merge_idx + 1] merged_cluster = { 'x_min': cluster1['x_min'], 'x_max': cluster2['x_max'], 'boxes': cluster1['boxes'] + cluster2['boxes'] } # 替换 working_clusters[merge_idx] = merged_cluster working_clusters.pop(merge_idx + 1) return working_clusters def _get_boxes_in_column(self, boxes: List[Dict], boundaries: List[Tuple[int, int]], col_idx: int) -> List[Dict]: """ 获取指定列范围内的 boxes(改进版:包含重叠) Args: boxes: 当前行的所有 boxes boundaries: 列边界 col_idx: 列索引 Returns: 该列的 boxes """ if col_idx >= len(boundaries): return [] x_start, x_end = boundaries[col_idx] col_boxes = [] for box in boxes: bbox = box['bbox'] box_x_start = bbox[0] box_x_end = bbox[2] # 🔑 改进:检查是否有重叠(不只是中心点) overlap = not (box_x_start > x_end or box_x_end < x_start) if overlap: col_boxes.append(box) return col_boxes def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict], table_bbox: Optional[List[int]], html: str) -> Tuple[List[Dict], List[int]]: """ 筛选表格区域内的 paddle boxes 策略: 1. 如果有 table_bbox,使用边界框筛选(扩展边界) 2. 如果没有 table_bbox,通过内容匹配推断区域 Args: paddle_boxes: paddle OCR 结果 table_bbox: 表格边界框 [x1, y1, x2, y2] html: HTML 内容(用于内容验证) Returns: (筛选后的 boxes, 实际表格边界框) """ if not paddle_boxes: return [], [0, 0, 0, 0] # 🎯 策略 1: 使用提供的 table_bbox(扩展边界) if table_bbox and len(table_bbox) == 4: x1, y1, x2, y2 = table_bbox # 扩展边界(考虑边框外的文本) margin = 20 expanded_bbox = [ max(0, x1 - margin), max(0, y1 - margin), x2 + margin, y2 + margin ] filtered = [] for box in paddle_boxes: bbox = box['bbox'] box_center_x = (bbox[0] + bbox[2]) / 2 box_center_y = (bbox[1] + bbox[3]) / 2 # 中心点在扩展区域内 if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and expanded_bbox[1] <= box_center_y <= expanded_bbox[3]): filtered.append(box) if filtered: # 计算实际边界框 actual_bbox = [ min(b['bbox'][0] for b in filtered), min(b['bbox'][1] for b in filtered), max(b['bbox'][2] for b in filtered), max(b['bbox'][3] for b in filtered) ] return filtered, actual_bbox # 🎯 策略 2: 通过内容匹配推断区域 print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...") # 提取 HTML 中的所有文本 from bs4 import BeautifulSoup soup = BeautifulSoup(html, 'html.parser') html_texts = set() for cell in soup.find_all(['td', 'th']): text = cell.get_text(strip=True) if text: html_texts.add(self.text_matcher.normalize_text(text)) if not html_texts: return [], [0, 0, 0, 0] # 找出与 HTML 内容匹配的 boxes matched_boxes = [] for box in paddle_boxes: normalized_text = self.text_matcher.normalize_text(box['text']) # 检查是否匹配 if any(normalized_text in ht or ht in normalized_text for ht in html_texts): matched_boxes.append(box) if not matched_boxes: # 🔑 降级:如果精确匹配失败,使用模糊匹配 print(" ℹ️ 精确匹配失败,尝试模糊匹配...") from fuzzywuzzy import fuzz for box in paddle_boxes: normalized_text = self.text_matcher.normalize_text(box['text']) for ht in html_texts: similarity = fuzz.partial_ratio(normalized_text, ht) if similarity >= 70: # 降低阈值 matched_boxes.append(box) break if matched_boxes: # 计算边界框 actual_bbox = [ min(b['bbox'][0] for b in matched_boxes), min(b['bbox'][1] for b in matched_boxes), max(b['bbox'][2] for b in matched_boxes), max(b['bbox'][3] for b in matched_boxes) ] # 🔑 扩展边界,包含可能遗漏的文本 margin = 30 expanded_bbox = [ max(0, actual_bbox[0] - margin), max(0, actual_bbox[1] - margin), actual_bbox[2] + margin, actual_bbox[3] + margin ] # 重新筛选(包含边界上的文本) final_filtered = [] for box in paddle_boxes: bbox = box['bbox'] box_center_x = (bbox[0] + bbox[2]) / 2 box_center_y = (bbox[1] + bbox[3]) / 2 if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and expanded_bbox[1] <= box_center_y <= expanded_bbox[3]): final_filtered.append(box) return final_filtered, actual_bbox # 🔑 最后的降级:返回所有 boxes print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes") if paddle_boxes: actual_bbox = [ min(b['bbox'][0] for b in paddle_boxes), min(b['bbox'][1] for b in paddle_boxes), max(b['bbox'][2] for b in paddle_boxes), max(b['bbox'][3] for b in paddle_boxes) ] return paddle_boxes, actual_bbox return [], [0, 0, 0, 0] def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict], y_tolerance: int = 10, auto_correct_skew: bool = True) -> List[Dict]: """ 将 paddle_text_boxes 按 y 坐标分组(聚类)- 增强版本 Args: paddle_boxes: Paddle OCR 文字框列表 y_tolerance: Y 坐标容忍度(像素) auto_correct_skew: 是否自动校正倾斜 Returns: 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]} """ if not paddle_boxes: return [] # 🎯 步骤 1: 检测并校正倾斜 if auto_correct_skew: rotation_angle = self._calculate_rotation_angle_from_polys(paddle_boxes) if abs(rotation_angle) > 0.5: # 倾斜角度 > 0.5 度才校正 # 假设图像尺寸从第一个 box 估算 max_x = max(box['bbox'][2] for box in paddle_boxes) max_y = max(box['bbox'][3] for box in paddle_boxes) image_size = (max_x, max_y) print(f" 🔧 校正倾斜角度: {rotation_angle:.2f}°") paddle_boxes = self._correct_bbox_skew(paddle_boxes, -rotation_angle, image_size) # 🎯 步骤 2: 按校正后的 y 坐标分组 boxes_with_y = [] for box in paddle_boxes: bbox = box['bbox'] y_center = (bbox[1] + bbox[3]) / 2 boxes_with_y.append({ 'y_center': y_center, 'box': box }) # 按 y 坐标排序 boxes_with_y.sort(key=lambda x: x['y_center']) # 聚类(增强容忍度) groups = [] current_group = None # 🔑 动态调整容忍度(倾斜校正后可以更严格) # effective_tolerance = y_tolerance if auto_correct_skew else y_tolerance * 1.5 for item in boxes_with_y: if current_group is None: # 开始新组 current_group = { 'y_center': item['y_center'], 'boxes': [item['box']] } else: if abs(item['y_center'] - current_group['y_center']) <= y_tolerance: current_group['boxes'].append(item['box']) # 更新组的中心 current_group['y_center'] = sum( (b['bbox'][1] + b['bbox'][3]) / 2 for b in current_group['boxes'] ) / len(current_group['boxes']) else: groups.append(current_group) current_group = { 'y_center': item['y_center'], 'boxes': [item['box']] } if current_group: groups.append(current_group) print(f" ✓ 分组完成: {len(groups)} 行") return groups def _calculate_rotation_angle_from_polys(self, paddle_boxes: List[Dict], sample_ratio: float = 0.5, outlier_threshold: float = 0.3) -> float: """ 从 dt_polys 计算文档倾斜角度(改进版:更鲁棒) """ if not paddle_boxes: return 0.0 # 🎯 步骤1: 收集文本行的倾斜角度 line_angles = [] for box in paddle_boxes: poly = box.get('poly', []) if len(poly) < 4: continue # 提取上边缘的两个点 x1, y1 = poly[0] x2, y2 = poly[1] # 计算宽度和高度 width = abs(x2 - x1) height = abs(poly[2][1] - y1) # 🔑 过滤条件 if width < 50: # 太短的文本不可靠 continue if width < height * 0.5: # 垂直文本 continue # ⚠️ 关键修复:考虑图像坐标系(y 轴向下) dx = x2 - x1 dy = y2 - y1 if abs(dx) > 10: # 🔧 使用 -arctan2 来校正坐标系方向 # 图像中向右下倾斜(dy>0)应该返回负角度 angle_rad = -np.arctan2(dy, dx) # 只保留小角度倾斜(-15° ~ +15°) if abs(angle_rad) < np.radians(15): line_angles.append({ 'angle': angle_rad, 'weight': width, # 长文本行权重更高 'y_center': (y1 + poly[2][1]) / 2 }) if len(line_angles) < 5: print(" ⚠️ 有效样本不足,跳过倾斜校正") return 0.0 # 🎯 步骤2: 按 y 坐标排序,只使用中间区域 line_angles.sort(key=lambda x: x['y_center']) start_idx = int(len(line_angles) * (1 - sample_ratio) / 2) end_idx = int(len(line_angles) * (1 + sample_ratio) / 2) sampled_angles = line_angles[start_idx:end_idx] # 🎯 步骤3: 计算中位数角度(初步估计) raw_angles = [item['angle'] for item in sampled_angles] median_angle = np.median(raw_angles) # 🎯 步骤4: 过滤异常值(与中位数差异过大) filtered_angles = [] for item in sampled_angles: if abs(item['angle'] - median_angle) < outlier_threshold: filtered_angles.append(item) if len(filtered_angles) < 3: print(" ⚠️ 过滤后样本不足") return np.degrees(median_angle) # 🎯 步骤5: 加权平均(长文本行权重更高) total_weight = sum(item['weight'] for item in filtered_angles) weighted_angle = sum( item['angle'] * item['weight'] for item in filtered_angles ) / total_weight angle_deg = np.degrees(weighted_angle) print(f" 📐 倾斜角度检测:") print(f" • 原始样本: {len(line_angles)} 个") print(f" • 中间采样: {len(sampled_angles)} 个") print(f" • 过滤后: {len(filtered_angles)} 个") print(f" • 中位数角度: {np.degrees(median_angle):.3f}°") print(f" • 加权平均: {angle_deg:.3f}°") return angle_deg def _rotate_point(self, point: Tuple[float, float], angle_deg: float, center: Tuple[float, float] = (0, 0)) -> Tuple[float, float]: """ 旋转点坐标 Args: point: 原始点 (x, y) angle_deg: 旋转角度(度数,正值表示逆时针) center: 旋转中心 Returns: 旋转后的点 (x', y') """ x, y = point cx, cy = center # 转换为弧度 angle_rad = np.radians(angle_deg) # 平移到原点 x -= cx y -= cy # 旋转 x_new = x * np.cos(angle_rad) - y * np.sin(angle_rad) y_new = x * np.sin(angle_rad) + y * np.cos(angle_rad) # 平移回去 x_new += cx y_new += cy return (x_new, y_new) def _correct_bbox_skew(self, paddle_boxes: List[Dict], rotation_angle: float, image_size: Tuple[int, int]) -> List[Dict]: """ 校正文本框的倾斜 Args: paddle_boxes: Paddle OCR 结果 rotation_angle: 倾斜角度 image_size: 图像尺寸 (width, height) Returns: 校正后的文本框列表 """ if abs(rotation_angle) < 0.1: # 倾斜角度很小,不需要校正 return paddle_boxes width, height = image_size center = (width / 2, height / 2) corrected_boxes = [] for box in paddle_boxes: poly = box.get('poly', []) if len(poly) < 4: corrected_boxes.append(box) continue # 🎯 旋转多边形的四个角点 rotated_poly = [ self._rotate_point(point, -rotation_angle, center) for point in poly ] # 重新计算 bbox x_coords = [p[0] for p in rotated_poly] y_coords = [p[1] for p in rotated_poly] corrected_bbox = [ min(x_coords), min(y_coords), max(x_coords), max(y_coords) ] # 创建校正后的 box corrected_box = box.copy() corrected_box['bbox'] = corrected_bbox corrected_box['poly'] = rotated_poly corrected_box['original_bbox'] = box['bbox'] # 保存原始坐标 corrected_boxes.append(corrected_box) return corrected_boxes def _match_html_rows_to_paddle_groups(self, html_rows: List, grouped_boxes: List[Dict]) -> Dict[int, List[int]]: """ 智能匹配 HTML 行与 paddle 分组(修正版:严格顺序匹配) 策略: 1. 数量相等:1:1 映射 2. 数量不等:按内容匹配,但保持 y 坐标顺序 """ if not html_rows or not grouped_boxes: return {} mapping = {} # 🎯 策略 1: 数量相等,简单 1:1 映射 if len(html_rows) == len(grouped_boxes): for i in range(len(html_rows)): mapping[i] = [i] return mapping # 🎯 策略 2: 基于内容匹配(修正版:严格单调递增) from fuzzywuzzy import fuzz used_groups = set() next_group_to_check = 0 # 🔑 关键改进:维护全局组索引 for row_idx, row in enumerate(html_rows): row_texts = [cell.get_text(strip=True) for cell in row.find_all(['td', 'th'])] row_texts = [t for t in row_texts if t] if not row_texts: mapping[row_idx] = [] continue row_text_normalized = [self.text_matcher.normalize_text(t) for t in row_texts] row_combined_text = ''.join(row_text_normalized) best_groups = [] best_score = 0 # 🔑 关键改进:从 next_group_to_check 开始搜索 max_window = 5 for group_count in range(1, max_window + 1): # 🔑 从当前位置开始,而不是从第一个未使用的组 start_group = next_group_to_check end_group = start_group + group_count if end_group > len(grouped_boxes): break combined_group_indices = list(range(start_group, end_group)) # 🔑 跳过已使用的组(但不重新计算 start_group) if any(idx in used_groups for idx in combined_group_indices): continue # 收集组内所有文本 combined_texts = [] for g_idx in combined_group_indices: group_boxes = grouped_boxes[g_idx].get('boxes', []) for box in group_boxes: if box.get('used'): continue normalized_text = self.text_matcher.normalize_text(box.get('text', '')) if normalized_text: combined_texts.append(normalized_text) if not combined_texts: continue paddle_combined_text = ''.join(combined_texts) # 匹配策略 match_count = 0 for rt in row_text_normalized: if len(rt) < 2: continue # 精确匹配 if any(rt == ct for ct in combined_texts): match_count += 1 continue # 子串匹配 if any(rt in ct or ct in rt for ct in combined_texts): match_count += 1 continue # 在合并文本中查找 if rt in paddle_combined_text: match_count += 1 continue # 模糊匹配 for ct in combined_texts: similarity = fuzz.partial_ratio(rt, ct) if similarity >= 75: match_count += 1 break # 整行匹配 row_similarity = fuzz.partial_ratio(row_combined_text, paddle_combined_text) coverage = match_count / len(row_texts) if row_texts else 0 combined_coverage = row_similarity / 100.0 final_score = max(coverage, combined_coverage) if final_score > best_score: best_score = final_score best_groups = combined_group_indices print(f" 行 {row_idx} 候选: 组 {combined_group_indices}, " f"单元格匹配: {match_count}/{len(row_texts)}, " f"整行相似度: {row_similarity}%, " f"最终得分: {final_score:.2f}") if final_score >= 0.9: break # 🔑 降低阈值 if best_groups and best_score >= 0.3: mapping[row_idx] = best_groups used_groups.update(best_groups) # 🔑 关键改进:更新下一个要检查的组 next_group_to_check = max(best_groups) + 1 print(f" ✓ 行 {row_idx}: 匹配组 {best_groups} (得分: {best_score:.2f}), " f"下次从组 {next_group_to_check} 开始") else: mapping[row_idx] = [] # 🔑 关键改进:即使没匹配,也要推进指针(假设跳过 1 个组) if next_group_to_check < len(grouped_boxes): next_group_to_check += 1 print(f" ✗ 行 {row_idx}: 无匹配 (最佳得分: {best_score:.2f}), " f"推进到组 {next_group_to_check}") # 🎯 策略 3: 第二遍 - 处理未使用的组(关键!) unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups] if unused_groups: print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}") # 🔑 将未使用的组合并到相邻的已匹配行 for unused_idx in unused_groups: # 🎯 关键改进:计算与相邻行的边界距离 unused_group = grouped_boxes[unused_idx] unused_y_min = min(b['bbox'][1] for b in unused_group['boxes']) unused_y_max = max(b['bbox'][3] for b in unused_group['boxes']) # 🔑 查找上方和下方最近的已使用组 above_idx = None below_idx = None above_distance = float('inf') below_distance = float('inf') # 向上查找 for i in range(unused_idx - 1, -1, -1): if i in used_groups: above_idx = i # 🎯 边界距离:unused 的最小 y - above 的最大 y above_group = grouped_boxes[i] max_y_box = max( above_group['boxes'], key=lambda b: b['bbox'][3] ) above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2 above_distance = abs(unused_y_min - above_y_center) print(f" • 组 {unused_idx} 与上方组 {i} 距离: {above_distance:.1f}px") break # 向下查找 for i in range(unused_idx + 1, len(grouped_boxes)): if i in used_groups: below_idx = i # 🎯 边界距离:below 的最小 y - unused 的最大 y below_group = grouped_boxes[i] min_y_box = min( below_group['boxes'], key=lambda b: b['bbox'][1] ) below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2 below_distance = abs(below_y_center - unused_y_max) print(f" • 组 {unused_idx} 与下方组 {i} 距离: {below_distance:.1f}px") break # 🎯 选择距离更近的一侧 if above_idx is not None and below_idx is not None: # 都存在,选择距离更近的 if above_distance < below_distance: closest_used_idx = above_idx merge_direction = "上方" else: closest_used_idx = below_idx merge_direction = "下方" print(f" ✓ 组 {unused_idx} 选择合并到{merge_direction}组 {closest_used_idx}") elif above_idx is not None: closest_used_idx = above_idx merge_direction = "上方" elif below_idx is not None: closest_used_idx = below_idx merge_direction = "下方" else: print(f" ⚠️ 组 {unused_idx} 无相邻已使用组,跳过") continue # 🔑 找到该组对应的 HTML 行 target_html_row = None for html_row_idx, group_indices in mapping.items(): if closest_used_idx in group_indices: target_html_row = html_row_idx break if target_html_row is not None: # 🎯 根据合并方向决定目标行 if merge_direction == "上方": # 合并到上方对应的 HTML 行 if target_html_row in mapping: if unused_idx not in mapping[target_html_row]: mapping[target_html_row].append(unused_idx) print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(上方行)") else: # 合并到下方对应的 HTML 行 if target_html_row in mapping: if unused_idx not in mapping[target_html_row]: mapping[target_html_row].append(unused_idx) print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(下方行)") used_groups.add(unused_idx) # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引 for row_idx in mapping: if mapping[row_idx]: mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center']) return mapping def _preprocess_close_groups(self, grouped_boxes: List[Dict], y_gap_threshold: int = 10) -> List[List[int]]: """ 🆕 预处理:将 y 间距很小的组预合并 Args: grouped_boxes: 原始分组 y_gap_threshold: Y 间距阈值(小于此值认为是同一行) Returns: 预处理后的组索引列表 [[0,1], [2], [3,4,5], ...] """ if not grouped_boxes: return [] preprocessed = [] current_group = [0] for i in range(1, len(grouped_boxes)): prev_group = grouped_boxes[i - 1] curr_group = grouped_boxes[i] # 计算间距 prev_y_max = max(b['bbox'][3] for b in prev_group['boxes']) curr_y_min = min(b['bbox'][1] for b in curr_group['boxes']) gap = abs(curr_y_min - prev_y_max) if gap <= y_gap_threshold: # 间距很小,合并 current_group.append(i) print(f" 预合并: 组 {i-1} 和 {i} (间距: {gap}px)") else: # 间距较大,开始新组 preprocessed.append(current_group) current_group = [i] # 添加最后一组 if current_group: preprocessed.append(current_group) return preprocessed def _match_cell_sequential(self, cell_text: str, boxes: List[Dict], col_boundaries: List[Tuple[int, int]], start_idx: int) -> Optional[Dict]: """ 🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配 策略: 1. 找到第一个未使用的 box 2. 尝试单个 box 精确匹配 3. 如果失败,尝试合并多个 boxes Args: cell_text: HTML 单元格文本 boxes: 候选 boxes(已按 x 坐标排序) col_boundaries: 列边界列表 start_idx: 起始索引 Returns: {'bbox': [x1,y1,x2,y2], 'text': str, 'score': float, 'paddle_indices': [idx1, idx2], 'used_boxes': [box1, box2], 'last_used_index': int} """ from fuzzywuzzy import fuzz cell_text_normalized = self.text_matcher.normalize_text(cell_text) if len(cell_text_normalized) < 2: return None # 🔑 找到第一个未使用的 box first_unused_idx = start_idx while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'): first_unused_idx += 1 if first_unused_idx >= len(boxes): return None # 🔑 策略 1: 单个 box 精确匹配 for box in boxes[first_unused_idx:]: if box.get('used'): continue box_text = self.text_matcher.normalize_text(box['text']) if cell_text_normalized == box_text: return self._build_match_result([box], box['text'], 100.0, boxes.index(box)) # 🔑 策略 2: 多个 boxes 合并匹配 unused_boxes = [b for b in boxes if not b.get('used')] # 合并同列的 boxes 合并 merged_bboxes = [] for col_idx in range(len(col_boundaries)): combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx) if len(combo_boxes) > 0: sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0])) merged_text = ''.join([b['text'] for b in sorted_combo]) merged_bboxes.append({ 'text': merged_text, 'sorted_combo': sorted_combo }) for box in merged_bboxes: # 1. 精确匹配 merged_text_normalized = self.text_matcher.normalize_text(box['text']) if cell_text_normalized == merged_text_normalized: last_sort_idx = boxes.index(box['sorted_combo'][-1]) return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx) # 2. 子串匹配 is_substring = (cell_text_normalized in merged_text_normalized or merged_text_normalized in cell_text_normalized) # 3. 模糊匹配 similarity = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized) # 🎯 子串匹配加分 if is_substring: similarity = min(100, similarity + 10) if similarity >= self.text_matcher.similarity_threshold: print(f" ✓ 匹配成功: '{cell_text[:15]}' vs '{merged_text[:15]}' (相似度: {similarity})") return self._build_match_result(box['sorted_combo'], box['text'], similarity, start_idx) print(f" ✗ 匹配失败: '{cell_text[:15]}'") return None def _build_match_result(self, boxes: List[Dict], text: str, score: float, last_index: int) -> Dict: """构建匹配结果(使用原始坐标)""" # 🔑 关键修复:使用 original_bbox(如果存在) def get_original_bbox(box: Dict) -> List[int]: return box.get('original_bbox', box['bbox']) original_bboxes = [get_original_bbox(b) for b in boxes] merged_bbox = [ min(b[0] for b in original_bboxes), min(b[1] for b in original_bboxes), max(b[2] for b in original_bboxes), max(b[3] for b in original_bboxes) ] return { 'bbox': merged_bbox, # ✅ 使用原始坐标 'text': text, 'score': score, 'paddle_indices': [b['paddle_bbox_index'] for b in boxes], 'used_boxes': boxes, 'last_used_index': last_index }